
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Fault-tolerant supervisory control of discrete-event
systems
Qin Wen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wen, Qin, "Fault-tolerant supervisory control of discrete-event systems" (2009). Graduate Theses and Dissertations. 10092.
https://lib.dr.iastate.edu/etd/10092

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10092?utm_source=lib.dr.iastate.edu%2Fetd%2F10092&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Fault-tolerant supervisory control of discrete-event systems

by

Qin Wen

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Program of Study Committee:
Ratnesh Kumar, Major Professor

Samik Basu
Nicola Elia

Manimaran Govindarasu
Arun K. Somani

Iowa State University

Ames, Iowa

2009

Copyright c© Qin Wen, 2009. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my wife Ying Wang, and my parents Shiyan Wen and Guangqi Zeng.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Discrete Event Systems . 1

1.1.1 The Concept of Discrete-Event Systems 1

1.2 Fault Tolerance . 3

1.2.1 Introduction . 3

1.2.2 The Concepts about Fault Tolerance . 4

1.3 Fault Tolerant Control . 8

1.3.1 Controller Re-Design . 9

1.3.2 Formal Verification . 11

1.4 Fault Detection and Fault Diagnosis . 12

1.4.1 FMEA in System Design . 12

1.4.2 Fault Detection . 13

1.4.3 Fault Diagnosis . 14

1.5 Organization of Dissertation . 17

CHAPTER 2. PRELIMINARIES AND NOTATIONS 19

2.1 Languages . 19

2.2 Automata . 22

2.3 Stability . 26

www.manaraa.com

iv

CHAPTER 3. A FRAMEWORK FOR FAULT-TOLERANT CONTROL

OF DISCRETE EVENT SYSTEMS . 27

3.1 Introduction . 28

3.2 Fault-Tolerant Supervisory Control . 30

3.3 Existence of Fault-Tolerant Supervisor . 34

3.4 Application Example . 38

3.5 Weakly Fault-Tolerant Supervisory Control . 42

3.6 Existence of Weakly Fault-Tolerant Supervisor 46

3.7 Application Example (Continued) . 49

3.8 Nonuniformly Bounded Fault-Tolerance . 51

3.9 Extension . 53

3.10 Conclusion . 55

CHAPTER 4. Synthesis of Optimal Fault-Tolerant Supervisor for Discrete

Event Systems . 57

4.1 Introduction . 57

4.2 Preliminaries and Notations . 60

4.3 Formulation of Optimal Fault-Tolerant Control Synthesis Problem 64

4.4 Computation of Optimal Fault-Tolerant Control 70

4.5 Optimality of Recovery Delay . 77

4.6 Application Example . 80

4.7 Conclusion . 86

CHAPTER 5. Decentralized Diagnosis of Event-Driven Systems for Safely

Reacting to Failures . 87

5.1 Introduction . 88

5.2 Notions and Preliminaries . 90

5.3 Safe-Codiagnosability . 92

5.4 Verification of Safe-Codiagnosability . 98

5.5 Conclusion . 103

www.manaraa.com

v

CHAPTER 6. Conclusion . 105

6.1 Summarization of Dissertation . 105

6.2 Future Research Topics . 107

BIBLIOGRAPHY . 110

www.manaraa.com

vi

LIST OF TABLES

Table 1.1 Fault classification . 5

Table 1.2 Software fault tolerance vs. Hardware fault tolerance 7

Table 3.1 State categories . 39

Table 3.2 List of faults in power system example 39

Table 3.3 List of controllable events in power system example 39

Table 3.4 Meaning of state variables in power system example 40

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 The discrete event model of the elevator 3

Figure 1.2 The architecture of fault-tolerant control 9

Figure 1.3 The graphical illustration of the system behavior 16

Figure 2.1 The complete automaton representing the elevator 22

Figure 2.2 A simple example to show L(G) and Lm(G) 24

Figure 3.1 Automaton G and its corresponding Gmin 31

Figure 3.2 Plant G and its nonfaulty part GN . 32

Figure 3.3 Controlled plant (G‖S, GN‖S) . 34

Figure 3.4 A 9-bus power system . 38

Figure 3.5 Model of power system of Figure 3.4 40

Figure 3.6 Nonfaulty part GN of power system . 42

Figure 3.7 Supervised power system . 43

Figure 3.8 Revised model of power system of Figure 3.4 50

Figure 3.9 Supervised power system that is weakly fault-tolerant 51

Figure 3.10 (G,GN) that is only nonuniformly bounded fault-tolerant 53

Figure 4.1 Plant G with its nonfaulty part GN . 65

Figure 4.2 Two fault-tolerant subplants . 65

Figure 4.3 Plant (Gn, GN
n), n ≥ 1 . 66

Figure 4.4 Plant (G∞, GN∞) . 66

Figure 4.5 (G1, G̃
N) and (G2, G̃

N) are fault-tolerant, but (G1 ∩G2, G̃
N) is not . . 69

Figure 4.6 Plant (G,GN) . 75

www.manaraa.com

viii

Figure 4.7 Controllable and nonblocking subplant (G0, G
N
0) 75

Figure 4.8 (G1, G
N
1) obtained after iteration no. 1 76

Figure 4.9 (G2, G
N
2) obtained after iteration no. 2 76

Figure 4.10 Optimal fault-tolerant subplant . 77

Figure 4.11 A simplified cooling water system for gas turbine 80

Figure 4.12 Model of cooling-water system of Figure 4.11 83

Figure 4.13 The controllable and nonblocking subplant of (G,GN) 84

Figure 4.14 The optimal fault-tolerant subplant ΥG(XN) 85

Figure 5.1 Models G, R and RS1, and testing automaton TS1 (right) 103

Figure 5.2 Safe specification model RS2 and testing automaton TS2 104

www.manaraa.com

ix

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, I

would like to give my sincere thanks to Dr. Ratnesh Kumar for his guidance, patience and

support throughout this research and the writing of this dissertation. His insights have often

renewed my hopes for completing my graduate education. I would also like to thank my

committee members for their efforts and contributions to this work: Dr. Samik Basu, Dr.

Nicola Elia, Dr. Manimaran Govindarasu, and Dr. Arun K. Somani. I would also like to

thank my officemates, Wenbin Qiu, Changyan Zhou, Jing Huang, Haifeng Liu, Licheng Jin,

Songyan Xu, Saayan Mitra, and Herman Sahota. Without their kind help, the finish of my

research work would be impossible.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Discrete Event Systems

This dissertation is a study of a special class of systems, discrete-event systems, which is a

good model for many systems that contain discrete changes. Even the continuous systems are

sometimes modeled approximately into discrete-event systems on purpose for easy study. In

recent years, more and more efforts are put on the research of discrete-event systems due to

their wide use. Examples of discrete-event systems include communication channels, computer

networks, manufacturing systems, etc.

1.1.1 The Concept of Discrete-Event Systems

Before going into the detail of discrete-event systems, it is necessary to first introduce the

definition of event. But, to mention ”event”, it is also necessary to give the definition of state

first. A state of a system is a unique configuration of information that can be used, together

with system inputs, to determine the system output. For a simple example, a light bulb can

have two states, ON and OFF. With the actions we put on the switch, we can implement the

transitions between these two states. These actions are events.

It is hard to give the strict definition, but generally an event is thought to occur instan-

taneously and cause transition from one state to another[Cassandras, C. G. and Lafortune,

S. (1999)]. An event should be identified with a specific action, e.g. turning on/off the switch,

the arrival of a customer in a queue. The time of the occurrence of the event sometimes is not

so important, depending on the type of the system.

A Discrete-Event System (DES) is a dynamic system which evolves according to asyn-

chronous occurrence of certain discrete changes (events) [Kumar, R. and Garg, V. K. (1995)].

www.manaraa.com

2

Examples of discrete-event systems include many man-made systems such as computer and

communication networks, robotics and manufacturing systems, and automated traffic system.

A DES has a discrete set of states which, unlike a physical system, may take symbolic values

rather then real values, for example, a machine is either idle, working or broken. States tran-

sitions in such systems occur at asynchronous discrete instants of time in response to events.

Model of DESs can be classified into untimed and timed models based on whether they ignore

the timing information. The untimed models have information about order of state and event

pairs, but not about their timing. Untimed models are used to control and coordinate orderly

occurrence of states and events so that the system under study meets certain qualitative goals

[Kumar, R. and Garg, V. K. (1995)]. In this thesis, we are concerned with studying only the

untimed models.

From the definition above, we can see that the discrete-event system has two basic proper-

ties:

1. The set of states is discrete.

2. The state transition is event-driven.

The first property differentiates DES with continuous-state system. The second property

indicates that the system can only change at discrete points, which are the occurrences of

asynchronously generated discrete events. Discrete-event system models many real systems.

Even if a system is not a discrete-state system, for the study interests, it may be helpful to have

a discrete-state point of view. An example is power system. Even it is continuous, it is easy

to analyze the system behavior if we describe it as a discrete-event system with many working

states. In this dissertation, a simplified power system will be modeled into a discrete-event

system to analyze its behavior after some faults and to synthesize the control actions.

Here is another simple example of discrete event system. Suppose we have an elevator

in a three-story building. The elevator connects the first, the second and the third floor.

Naturally, in the discrete event model of the elevator, there are three discrete states, each of

which represents a different floor that the elevator will stop at. From lower floor to higher floor,

www.manaraa.com

3

1 2 3

move up move up

move downmove down

Figure 1.1 The discrete event model of the elevator

the action is moving up, and to the opposite direction, the action is moving down. Figure 1.1

illustrates the discrete event model of the elevator. Circles are the states, with the numbers

representing the floors. Arrows are the transitions, and the names of the transition actions are

next to the arrows.

1.2 Fault Tolerance

1.2.1 Introduction

In modern world, people rely more and more on the availability and reliability of the com-

plex systems. An small error in the system may cause a disaster. An example is the traffic light

systems. The traffic lights are supposed to work continuously and correctly. The malfunction

of the traffic light, such as stop functioning or false directing, may lead to an unnecessary jam

or serious accidents. For some projects involving human lives, the dependability is extremely

critical due to the serious consequences.

With the development of industry, people pay more and more effort on studying trusty

systems. Systems are expected to work dependably under anticipation. The concept of de-

pendable computing first appeared in 1830s [Aviz̆ienis, A. and Laprie, J.-C. and Randell,

B. (2000)]. After the invention of electronic computer, practical techniques were used to im-

prove its reliability. The concept of failure-tolerant system was introduced by W.H. Pierce in

1965 [Pierce, W. H. (1965)]. The research on the fault-tolerant system develops fast, since

people rely more and more on the machines. Although it may be expensive to use fault-

tolerant techniques, they are applied in aircrafts and railway systems, due to the extremely

high cost that failures may cause in transportation. Fault-tolerant software are applied in a

lot of well-known projects, such as Ariane 5, Airbus A-320, Boeing B-777, Elektra Austrian

www.manaraa.com

4

railway signaling system, French train systems, NASA space shuttle, etc. [Voas, J. (2001)].

1.2.2 The Concepts about Fault Tolerance

1.2.2.1 Dependability

Fault tolerance is used to enhance the dependability of the system. Dependability is a

composed concept, which contains four attributes: reliability, availability, safety and security

[Jalote, P. (1998)].

• Reliability is the ability of a system, when it is needed, to perform its service correctly.

• Availability means the system is available to perform its service when it is needed.

• Safety is a characteristic that qualifies the ability to avoid catastrophic failures that

might involve human life or excessive costs.

• Security is the ability of a system to prevent unauthorized access.

Fault tolerance is the ability of a system to work correctly, even in case that some compo-

nents can not behave as desired. The purpose is to prove reliability and availability, such that

the system can work continuously and correctly. Although fault tolerance does not have direct

relation with safety and security, some researches [Weber, D. G. (1989)] can still make them

associated. A system can either be safe but not fault-tolerant, such as fail-safe systems which

fail in a safe state, or fault-tolerant but not safe, such as non-masking fault-tolerant systems,

which may temporarily enter an unsafe state after a fault occurs.

1.2.2.2 Faults

There are three kinds of threats to the dependability: failure, error and fault. Although

these three concepts are used undistinguished in many articles, it is necessary to make it clear

of the difference between them. A failure occurs when an actual running system deviates from

its specified behavior. An error is the part of the system state that is liable to lead to a failure.

A fault is the cause of an error. For example, a stuck-at-zero fault occurs on one bit in the

www.manaraa.com

5

memory. It has no harm as long as that bit is not used, or only value 0 is restored. This fault

may cause an error when value 1 is restored. And, it becomes a failure if this bit is read. It is

clear that these three threats have decreasing level of catastrophic influences on the systems.

That’s why so many efforts has been put on handling faults in order to prevent them becoming

failures.

Faults can be categorized into various classes, according to diverse attributes and sources.

Table 1.1 shows the classification according to some criteria.

Table 1.1 Fault classification

Duration transient, persistent, intermittent
Cause design, operational
Behavior crash, omission, timing, Byzantine

The last classification is made according to the behavior of the failed system. A crash fault

will cause the component to halt. An omission fault makes the component not to respond to

some inputs. If the component responds to the inputs either too early or too late, it has a

timing fault. And a Byzantine fault will lead the component to behave in an arbitrary manner.

Unlike the other classifications, the classes in this classification are not disjoint. A crash fault

is also an omission fault, and omission fault is a special case of timing fault. The class of

Byzantine fault contains all kinds of faults, such that the component with Byzantine fault

may have any kind of behavior, which makes the Byzantine fault the most difficult to cope

with. Therefore, if a fault-tolerant system can take care of Byzantine faults, it has the ability

to deal with any kind of faults. [Lamport, L. and Shostak, R. and Pease, M. (1980)] is

the first paper published about the Byzantine faults. Later, [Lamport, L. and Shostak, R.

and Pease, M. (1982)] has a systematic study of the Byzantine general problem, which helps

to manage Byzantine faults in distributed components. With respect to the same number of

faults, the study continues to reduce the number of rounds in reaching the agreement, as well

as to reduce the algorithm’s complexity in communication and computation. [Berman, P. and

Garay, J. A. and Kerry, K. J. (1989)], [Berman, P. and Garay, J. A. (1991)] etc. made some

www.manaraa.com

6

improvement on [Lamport, L. and Shostak, R. and Pease, M. (1980)], while [Garay, J. A.

and Moses, Y. (1998)], with polynomial complexity, reached agreement in t+1 rounds among

3t + 1 components, where t is the number of faults.

Since faults may cause undesired deviation of the system, how to deal with the faults is

the core problem in building a reliable system. Fault handling is a technique that covers a

wide range of method to treat with the faults. It includes fault prevention (fault avoidance),

fault tolerance, fault removal and fault forecasting [Aviz̆ienis, A. and Laprie, J.-C. and

Randell, B. (2000)]. Different from fault tolerance, in which the system works with some

failed components, fault prevention is achieved during deliberate design and manufacturing,

and fault removal is to remove faults before they lead to disastrous accidents, while fault

forecasting is to predict possible faults by concurrently evaluating the system performance.

1.2.2.3 Fault Tolerance

To provide fault tolerance, it is necessary for the system to have redundancy. Redundancy is

the key to support fault tolerance, such that there can be no fault tolerance without redundancy

[Gartner, F. C. (1999)]. Redundancy is defined as those parts of the system that are not

needed for the correct functioning of the system [Jalote, P. (1998)]. There can be hardware

redundancy (such as backup components) or software redundancy (such as reconfiguration

algorithms). Since the system needs time to handle the faults after being aware of them, time

redundancy, that is extra execution time, is also necessary.

In many cases, software and hardware are tied in achieving fault tolerance. In fact, hard-

ware redundancy nearly always employs software redundancy. Although the names look simi-

lar, there are quite big differences between software fault-tolerance (fault-tolerant computing)

and hardware fault-tolerance. [Laprie, J.-C. and Arlat, J. and Beounes, C. and Kanoun,

K. (1990)] presents the comparison and contrast of them in architecture. Table 1.2 gives the

contrast of them in other aspects.

In the presence of faults, different fault-tolerant systems may have different performance,

according to the techniques they use. Three different types of fault tolerance are listed below.

www.manaraa.com

7

Table 1.2 Software fault tolerance vs. Hardware fault tolerance

Hardware FT Software FT
Types of faults physical faults design faults
Origins of failures hardware defects design/implementation defects
Ways to tolerant faults forward/backward recovery design diversity

• Masking tolerance: Both safety and liveness are satisfied in the presence of faults.

• Non-Masking tolerance: Safety may be violated temporarily.

• Fail-Safe Tolerance: Only safety is satisfied in the presence of faults.

Fault masking has several backups for a single component, and uses normal components to

”mask” the faulty components, preventing them from affecting the correct performance of the

system. Fault masking is a widely used technique because of its simpleness and convenience.

Well-known examples include Triple Modular Redundancy (TMR) and Redundant Array of

Inexpensive Disks (RAID). According to the status of the backups during working, the backups

can be hot standby, cold standby or warm standby [Selic, B. (2002)]. The advantage of fault

masking is that the system can work continuously and safely after fault happens, but the cost

may be expensive.

Unlike masking fault tolerance, non-masking does not use backups. After fault isolation,

reconfiguration techniques are used to recover the system to normal performance. A controller

is needed to guide the recovery within some given specifications. Non-masking fault toler-

ance provides liveness, but the system may violate safety specification during recovery, and

the system performance may satisfy only a lower level of specification after recovery, which

is known as graceful degradation. Note that masking fault tolerance guarantees liveness, but

non-masking fault tolerance only guarantees it eventually. The advantage of non-masking fault

tolerance is that, although it is strictly weaker than masking fault tolerance, it can still be used

in cases when masking fault tolerance is too costly to implement or even provably impossi-

ble [Gartner, F. C. (1999)]. An interesting example is Denmark Ørsted project [Gartner,

F. C. (1999)], where using hardware redundancy to obtain a fail-safe design is impossible,

www.manaraa.com

8

due to cost and weight constraints. In addition, operator intervention from ground is limited

to periods when the satellite passes Denmark. There is a 13-hour interval, during which the

satellite is unattended. In this situation, autonomous fault tolerant control is a right choice.

Fail safe tolerance, that is failing in safe state, is another kind of property. Fail-stop

processors have been studied since 1980’s [Schlichting, R. D. and Schneider, F. B. (1983)],

[Schneider, F. B. (1983)]. Instead of keeping on working after fault, they simply ceases

functioning to preserve safety. It sacrifices liveness to ensure safety. Since the fail-safe systems

stop working when a fault occurs, it is a weaker form of fault tolerance, such that it is still

disputed (e.g. [Blanke, M. and Staroswiecki, M. and Wu, N. E. (2001)], [Blanke, M. and

Izadi-Zamanabadi, R. and Bogh, S. A. and Lunau, C. P. (1997)],[Voas, J. (2001)]) whether

fail-safe is a subset of fault tolerance. Since safety is more preferable than liveness, fail-safe

tolerance is still an advisable technique, used, for example, in the ground control system of the

Ariane 5 space missile project [Dega, J.-L. (1996)].

1.3 Fault Tolerant Control

Fault-tolerant control integrates diagnosis with control methods to handle faults. The aim

of fault-tolerant control is to prevent faults from being developed into serious failures ,and

therefore increase the availability and reliability of the system and reduce the risk of loss.

Various methods of fault-tolerant control have been developed. Most of fault-tolerant control

methods share a common structure, which is depicted in Figure 1.2 [Blanke, M. and Kinnaert,

M. and Lunze, J. and Staroswiecki, M. (2003)]:

A supervisor is added in fault-tolerant control, which contains the diagnostic block and

controller re-design block. The re-design block uses diagnosed information of the fault and

adjusts the controller accordingly. The re-design of the controller may change the controller

parameters, or give a new controller configuration. The single arrows represent signals, and

the double arrow refers information flow.

Without fault, the system runs mainly in the execution level. The nominal controller,

which is designed for the faultless system, attenuates the disturbance d and ensures set-point

www.manaraa.com

9

Figure 1.2 The architecture of fault-tolerant control

following and other requirements on the closed-loop system. In this situation, the diagnostic

block recognizes that the closed-loop system is faultless and no change of the execution is

necessary. If a fault f occurs, the supervision level makes the control loop fault-tolerant. The

diagnostic block identifies the fault and the controller re-design block adjusts the controller to

the new situation. Afterwards, the execution level alone continues to satisfy the control aims

[Blanke, M. and Kinnaert, M. and Lunze, J. and Staroswiecki, M. (2003)].

1.3.1 Controller Re-Design

In case of faults, the controller re-design block will compute the next controller from the

diagnosis result. There are two kinds of controller re-design methods: fault accommodation

and control reconfiguration.

In fault accommodation, the controller parameters are adapted to the dynamical properties

of the faulty plant. Before and after fault accommodation, the input and output of the plant

used in the control loop remain the same. A simple way of fault accommodation is to use

predesigned controllers, which are selected off-line for a specific fault. The re-design step is

to switch among different control laws. This step is quick and can meet strong real-time

constraints. However, it is for small systems, otherwise it is difficult to design in advance for

all possible faults before the system starts operating, and hard to store all possible controllers

in the control software (see more in [Blanke, M. and Kinnaert, M. and Lunze, J. and

www.manaraa.com

10

Staroswiecki, M. (2003)]).

Because it is fast and real-time, fault accommodation is used in many applications. The

method using fault accommodation is called fault adaptive control. Some recent works are

about fault adaptive control. A switching hybrid model is used in [Abdelwahed, S. and Wu,

J. and Biswas, G. and Ramirez, J. and Manders, E. (2005)] to represent the dynamics

of the system components and their interactions, and a controller scheme is designed and

implemented for efficient resource management in Advanced Life Support Systems. In [Ji, M.

and Zhang, Z. and Biswas, G. and Sarkar, N. (2003)], a hierarchical control accommodation

framework is developed. It provides switching stability among a set of trajectory tracking

controllers. Fault-adaptive control can also be found in many applications, such as aircraft

fuel systems [Karsai, G. and Biswas, G. and Pasternak, T. and Narasimhan, S. and Pecili,

G. and Simon, G. and Kovacshazy, T. (2001)], [Simon, G. and Karsai, G. and Biswas, G.

and Abdelwahed, S. and Mahadevan, N. and Szemethy, T. and Pecili, G. and Kovacshazy,

T. (2003)],aircraft roll control systems [Simon, G. and Kovacshazy, T. and Pecili, G. and

Szemethy, T. and Karsai, G. and Ledeczi, A. (2002)].

When fault accommodation is impossible, the entire control loop need to be reconfigured.

The input-output relations between controller and plant are changed. Reconfiguration includes

the selection of a new control configuration where alternative input and output signals are

used. The selection of these signals depends upon the existing faults. A new control law

has to be designed on-line. The necessity of control reconfiguration becomes obvious when

sensor or actuator faults are considered. If these components fail completely, the fault leads

to a breakdown of the control loop. There is no possibility to adapt the controller by simply

adjusting its parameters. Instead, alternative actuators or sensors have to be found, which are

not affected by the fault and which have similar interactions with the plant so that a reasonably

selected controller is able to satisfy the performance specifications on the closed-loop system

(see more in [Blanke, M. and Kinnaert, M. and Lunze, J. and Staroswiecki, M. (2003)]).

Although controller reconfiguration is more complicated than fault accommodation, it is

still a hot topic in research and application for its strong adaptability. [Looze, D. and Weiss,

www.manaraa.com

11

J. and Eterno, J. and Barrett, N. (2005)] focuses on the approach of automatic re-design of

flight control system based on linear quadratic techniques, which maximizes the feedback sys-

tem performance subject to a bandwidth constraint. [Elgersma, M. and Glavas̆ki, S. (2001)]

develops a distributed failure detection and isolation system for commuter and business air-

craft. Nonlinear continuous/discrete systems are studied. The failure detection, isolation and

recovery technique includes both discrete mode changes and continuous parameter values. [Liu,

J. and Darabi, H. (2004)] develops a framework for reconfiguration of a discrete event system

controller, which has a dynamic event observation set. Upon a change in the observation set,

there is a mega-controller, which reconfigures the controller by a aggregation or disaggregation

of the controller states.

1.3.2 Formal Verification

Starting from 1970’s, formal methods for the design and analysis have been applied. In

1980’s, they are firstly used in fault tolerance [Moitra, A. and Joseph, M. (1983)], [Schlichting,

R. D. and Schneider, F. B. (1983)]. Formal verification is used in system design [Bernardeschi,

C. and Fantechi, A. and Simoncini, L. (2000)], mostly in fault-tolerant computing systems,

to confirm that fault tolerance is achieved. Examples of such systems include concurrent and

real-time systems, communication networks and process control systems. For those systems,

fault tolerance, as well as timing, has been thought to be implementing issues of them, different

from the safety and liveness properties [Liu, Z. and Joseph, M. (1999)].

Currently, most researches of formal verification of fault tolerance are for fault tolerant

computing. [Liu, Z. and Joseph, M. (1996)] shows how stepwise refinement [Abadi, M. and

Lamport, L. (1988)], with the help of transformation, can be used for the development of

fault-tolerant system, with or without timing constraints. The advantage of this approach is

that the specification and verification techniques can be used for programs, as well as fault-

tolerant systems. In [Liu, Z. and Joseph, M. (1999)], the authors study the relationship

between fault tolerance and schedulability, because they affect each other and both affect the

functionality and timing of the program. A framework is provided for such relation and for

www.manaraa.com

12

formal development of safety-critical and/or timing critical computing systems. Two kinds of

timers are used in the program, which makes the automated verification feasible. [Lincoln, P.

and Rushby, J. (1993)] focuses on the algorithm for reliably distributing single-source data

to multiple channels in the presence of faults. In [Ayache, S. and Conguet, E. and Humbert,

P. and Rodriguez, C. and Sifakis, J. and Gerlich, R. (1996)], it tries to solve the problem of

applicability of formal method to the world of space avionics computing. A general framework

is proposed for the early validation of fault tolerance provisions in a complex computerized

system.

1.4 Fault Detection and Fault Diagnosis

To maintain the correct performance, it is important to detect the faults as soon as possible,

so that there will be enough time to apply corresponding measures before the faults turn into

failures. Fault detection and diagnosis are important, since the faults in the components, such

as sensors and actuators, are associated with potential damages and costs, which increase with

time. Early and accurate detection of faults helps to avoid loss of human life and money. In

fact, detection mechanisms alone can suffice to provide safety. Therefore, detection plays a

crucial part in fault tolerance.

1.4.1 FMEA in System Design

Before thinking about the fault detection and diagnosis, there are some other things we

need to consider first. What are the possible faults in the system? What are the effects of

them? Which of them are critical for the dependability of the system? Which symptoms

are essential for us to detect those faults? After those questions being answered, the step of

detection can be developed without being aimless.

Other areas of system design employ standard patterns for design, and rules for the quality

management of a development are well established. Fault-tolerant control development can

benefit from similar procedures. The first step in the systematic design [Blanke, M. (1996)]

is a component-based Failure Mode and Effects Analysis (FMEA). The FMEA analysis deals

www.manaraa.com

13

with component faults and the propagation of fault effects. Components are such as sensors,

controllers, and actuator motors. FMEA analysis is commonly required for safety-critical

systems. The result of the FMEA analysis is thus a specification of which faults should be

detected, and what reactions should be imposed on the system when certain patterns of fault

effects are observed by the supervisor. The completeness of correctness properties of the design

method are critical in daring to take this step. For more details, see [Blanke, M. and Izadi-

Zamanabadi, R. and Bogh, S. A. and Lunau, C. P. (1997)].

1.4.2 Fault Detection

Fault detection, just as its name implies, is to indicate that something is wrong in the

system. It is an old topic in design. A lot of fault detection researches have been done in

dynamic systems. The first major survey is provided by Willsky in 1976 [Willsky, A. S. (1976)],

which is later followed by some other good surveys [Isermann, R. (1984)], [Gertle, J. J. (1988)].

Fault detecting, simply speaking, tries to abstract useful information from the set of the

system output. Usually, a fixed subset of the system output is used to detect some specific

system faults. For example, an abrupt increase of current in one element is a potential indicator

of the short circuit of that element.

One way to detect faults is to delicately choose a set of system output, such that, if a

fault occurs, it can be detected by calculating the output, where some predefined system

inputs are used. The difficulty in this method is to find an output set to detect a fault. In

distributed systems, detection of predicates in faulty environment has studied [Garg, V. K.

and Mitchell, J. R. (1998)], [Chase, C. M. and Garg, V. K. (1998)], [Gartner, F. C. and

Kloppenburg, S. (2000)]. Another example is analytic redundancy. Till now, quite many

practical examples have applied fault detection techniques, using analytical redundancy [Chow,

E. Y. and Willsky, A. S. (1984)], [Cunningham, T. B. and Poyneer, R. D. (1977)], [Shapiro,

E. Y. and Decarli, H. E. (1979)], [Stuckenberg, N. (1985)], [Merrill, M. C. (1985)]. Analytical

redundancy (AR) [Chow, E. Y. and Willsky, A. S. (1984)] is a fault detection method that

allows the explicit derivation of the maximum possible number of linearly independent system

www.manaraa.com

14

model based consistency tests for a system [Leuschen, M. L. and Walker, I. D. and Cavallaro,

J. R. (2005)]. Using a linear model of the system of interest, AR exploits the null-space of the

state-space observability matrix to allow the creation of a set of test residuals [Chow, E. Y. and

Willsky, A. S. (1984)]. Given a system model, residual is the difference between the system

output and the model output. These residuals use sensor data histories and known control

inputs to detect any deviation from the static or dynamic behaviors of the model in real time

[Leuschen, M. L. and Walker, I. D. and Cavallaro, J. R. (2005)].

Another way is to artificially add some checks to the system, which will directly indicate

the occurrence of faults. Some common techniques are:

• Replication checks Multiple replicas of a component are running simultaneously. The

outputs of the replicas are compared and any discrepancy is an indication of a fault,

supposing all the processes are deterministic. The particular form of this check, in

hardware, is TMR, while, in software, it is N-version programming.

• Timing checks It is for timing faults. Timers are used to detect the termination of a

process. If a timer times out, a timing faults happens. The choice of the time needs to be

taken seriously, since setting the timer too tightly or too loosely may harm the accuracy

of the detection.

• Rum-time constraints checks Certain constraints are set to some variables. For

example, as long as the boundary values of variables are not being exceeded, there is no

fault. But code and performance overhead will be introduced, since the variables and

the boundaries are compared at run time.

1.4.3 Fault Diagnosis

Compared with fault detection, fault diagnosis is a more complex task, which consists of

determining the type, size and location of the faults as well as its time of detection [Patton,

R. J. and Frank, P. M. and Clark, R. N. (2000)]. For fault tolerant control, the location

and the magnitude of the fault need to be determined in order to decide the appropriate way

www.manaraa.com

15

of controller re-design or system reconfiguration. Fault diagnosis has been a research area

for many years, and the theory is well established [Patton, R. J. and Frank, P. and Clarke,

D. (1989)], [Gertler, J. (1995)]. [Patton, R. (1993)] gives an overview of available approaches,

[Basseville, M. and Nikiforov, I. (1994)] treats the detection problem from a statistical point

of view, [Sampath, M. and Sengupta, R. and Lafortune, S. and Sinnamohideen, K. and

Teneketzis, D. C. (1996)] provides an analysis of fault-diagnostic control using discrete-event

analysis.

Normally, diagnosis is composed of three steps:

• Fault detection Decide whether a fault has occurred. The time when the fault happens

is determined in this step.

• Fault isolation Decide which component in the system has a fault. The location of the

fault is determined.

• Fault identification Identify the fault and estimate its magnitude. This step is to

determine what kind of fault has occurred.

In application, a dynamical system with input u and output y is subjected to some fault

f . The system behavior depends on the fault f ∈ F where the element f0 of the set F stands

for the faultless case. The diagnostic system obtains the I/O pair (U,Y), which contains the

sequences of input and output values sampled at discrete time points. The diagnostic problem

to be solved is that, for a given I/O pair (U,Y), find the fault f. The problem concerns on-line

diagnosis based on the available measurement data. No inspection on the process is possible.

And the diagnostic problem has to meet real-time constraints accompanied with the system.

Most of the existing different diagnostic methods follow a common principle, called consistency-

based diagnosis, which can be explained by using the notion of the system behavior. The idea

of consistency-based diagnosis can be explained by means of Figure 1.3 [Blanke, M. and Kin-

naert, M. and Lunze, J. and Staroswiecki, M. (2003)]. The behavior B is a subset of the

space U × Y of all possible combinations of input and output signals. The dot A represents a

single I/O pair, where C = (uC , yC) represents a pair that is not consistent with the system

www.manaraa.com

16

Figure 1.3 The graphical illustration of the system behavior

dynamics. That is, for the input uC , the system produces an output y 6= yC , then the fault

is detectable. This is the principle of consistency-based diagnosis [Blanke, M. and Kinnaert,

M. and Lunze, J. and Staroswiecki, M. (2003)].

The diagnostic method tests whether the measurement (U, Y) is consistent with the nominal

system behavior. If the faulty system produces the I/O pair that is still in B, no inconsistency

occurs despite of the fault. Therefore the fault is not detectable. The question of whether a

certain fault can be detected concerns the diagnosability of the system.

Fault diagnosis can be categorized into two methods: model based and non-model based.

Model-based methods compare the observed behavior with model to detect the faults, while

non-model based methods match the observed behavior to known faults. For discrete event

systems, a certain model based approach for failure diagnosis is proposed in [Sampath, M.

and Sengupta, R. and Lafortune, S. and Sinnamohideen, K. and Teneketzis, D. C. (1995)],

and get extended in [Qiu, W. (2005)], [Debouk, R. and Lafortune, S. and Teneketzis,

D. (2000)], [Jiang, S. and Kumar, R. (2002)], [Jiang, S. and Kumar, R. (2003)], [Jiang,

S. and Kumar, R. and Garcia, H. E. (2003)], [Sampath, M. and Lafortune, S. (1998)], [Qiu,

W. and Kumar, R. (2006)], [Zad, S. H. and Kwong, R. H. and Wonham, W. M. (2003)]. The

application of DESs failure diagnosis includes HVAC systems [Sampath, M. and Sengupta,

R. and Lafortune, S. and Sinnamohideen, K. and Teneketzis, D. C. (1996)], transportation

systems [Lygeros, J. and Godbole, D. N. and Broucke, M. (2000)], [Godbole, D. N. and

www.manaraa.com

17

Lygeros, J. and Singh, E. and Deshpande, A. and Lindsey, A. E. (2000)], communication

networks [Beneveniste, A. and Fabre, E. and Haar, S. and Jard, C. (2003)], [Bouloutas,

A. and Hart, G. W. and Schwartz, M. (1992)], [Miller, R. E. and Arisha, A. K. (2001)],

manufacturing systems [Das, S. R. and Holloway, L. E. (2000)], [Pandalai, D. and Holloway,

L. (2000)], digital circuits [Lin, F. (1994)], [Westerman, G. and Kumar, R. and Stroud, C.

and Heath, J. R. (1998)], and power system [Hadjicostis, C. N. and Verghese, G. C. (2001)].

1.5 Organization of Dissertation

This dissertation is organized as follows:

In Chapter 2, necessary preliminaries and notations are introduced. We first introduce the

definition of language, and the notations and operations about language. Then we give the

definition of automaton, with a simple example. After that, we introduce the generated and

marked language of an automaton. The definition of supervisor is also introduced. As the

third part of the introduction, we give the definition of stability, including state stability and

language stability.

In Chapter 3, we introduce a framework of fault-tolerant supervisory control of discrete

event systems. We first formulate the definition of fault-tolerant supervisory control, and give a

sufficient and necessary condition for the existence of a fault-tolerant supervisor. The condition

involves the notion of controllability, observability and stability. An example of a simplified

power system is provided. As an extension, we also develop a notion of weakly fault-tolerant

supervisor control, which requires weaker conditions. A sufficient and necessary condition for

the weakly fault-tolerant supervisor, and an example is provided. At the end of this chapter,

we briefly introduce the notion of nonuniformly-bounded fault-tolerance as an extension.

In Chapter 4, we introduce the synthesizing algorithm to obtain a fault-tolerant supervisor.

Since the previous chapter gives the existence condition, it is natural to formulate the algorithm

to find a supervisor when the condition is satisfied. In this chapter, we synthesize an optimal

fault-tolerant supervisor that maximizes the nonfaulty behavior of the controlled system and

at the same time minimizes the faulty behavior. The complexity of this algorithm is quadratic

www.manaraa.com

18

in the size of plant. A deliberately designed abstract example and an application example are

provided to illustrate the algorithm.

In Chapter 5, we introduce the notion of safe-codiagnosability, as an extension of the

notion of safe-diagnosability to decentralized setting, where multiple independent diagnosors

can perform diagnosis without communication. Safe-codiagnosability requires that when a

fault occurs, there exist at least one diagnosor that can detect the faulty event before the

safety specification being violated. To verify safe-codiagnosability, we provide an algorithm

with polynomial complexity.

In Chapter 6, we summarize this dissertation and discuss the possible research topics in

the future.

www.manaraa.com

19

CHAPTER 2. PRELIMINARIES AND NOTATIONS

In this section, we will introduce some prerequisite definitions, about automata and lan-

guages, and the notations that will be frequently used in the next chapters.

2.1 Languages

In the previous chapter, we introduced that discrete-event systems concern about the order

of the states visited and the events that cause the state transitions. We assume that the

behavior of the DES is described in terms of event sequences of the form e1e2 · · · en, where

ei(i = 1, 2, . . . , n) is the 〉th event occurred. Such event sequence is called a trace or string of

the systems. A collection of traces is called a language.

A string with no events is called an empty string, and is denoted by ε. The length of a

string is the number of events contained in it. We use |s| to denote the length of string s.

Then, the length of an empty string is zero.

Language is defined over an event set. For example, given an event set E = {a, b, c}, a

language can be defined as L = {ε, a, abb, ca}. Let Σ∗ denote the set of all finite length strings

consisting of events from Σ, including empty string. Then, a language is a subset of Σ∗. For

example, if Σ = {a, b, c}, then

Σ∗ = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, ca, aaa, . . .}

Given two languages K1,K2 ⊆ Σ∗, the following binary operations are available([Kumar,

R. and Garg, V. K. (1995)]):

www.manaraa.com

20

• The intersection of K1 and K2, denoted as K1 ∩K2, is the language

K1 ∩K2 = {s ∈ Σ∗|s ∈ K1 and s ∈ K2}.

• The difference between K1 and K2, denoted as K1 −K2, is the language

K1 −K2 = {s ∈ Σ∗|s ∈ K1 and s 6∈ K2}.

• The choice between K1 and K2, denoted as K1 + K2, is the language

K1 + K2 = {s ∈ Σ∗|s ∈ K1 or s ∈ K2} = K1 ∪K2.

• The concatenation of K1 and K2, denoted as K1.K2 (or simply K1K2), is the language

K1.K2 = {s.t ∈ Σ∗|s ∈ K1 and t ∈ K2}.

• The quotient of K1 with respect to K2, denoted as K1/K2, is the language

K1/K2 = {s ∈ Σ∗|∃t ∈ K2 such that st ∈ K1}.

• The language K1 after K2, denoted as K1\K2, is the language

K1\K2 = {s ∈ Σ∗|∃t ∈ K2 such that ts ∈ K1}.

If uv = s with u, v ∈ Σ∗, then u is called a prefix of s, and v is called a suffix of s. u and

v are also substrings of s. Note that ε and s are prefixes, suffixes and substrings of s, since

s = εs = sε.

Consider a language K ⊆ Σ∗, the following unary operations are available[Kumar, R. and

Garg, V. K. (1995)]:

www.manaraa.com

21

• The complement of K, denoted as Kc ⊆ Σ∗, is the language

Kc = Σ∗ −K.

• The Kleene closure of K, denoted as K∗, is the language

K∗ =
⋃

n∈N
Kn,

where K0 = {ε}, and for each n ≥ 0, Kn+1 = Kn.K.

• The prefix closure, denoted as pr(K) ⊆ Σ∗ (sometimes denoted also as K̄), is the language

pr(K) = {s ∈ Σ∗|∃t ∈ K : s ≤ t}.

• The extension closure, denoted as ext(K) ⊆ Σ∗, is the language

ext(K) = {s ∈ Σ∗|∃t ∈ K : t ≤ s}.

• The reverse of K, denoted as KR ⊆ Σ∗, is the language

KR = {sR ∈ Σ∗|s ∈ K},

where sR denotes the string obtained by reversing the string, i.e.,

εR = ε; ∀s ∈ Σ∗, σ ∈ Σ : (sσ)R = σsR.

K is said to be Kleene closed if K∗ = K; K is said to be prefix closed if pr(K) = K; K is

said to be extension closed if ext(K) = K.

www.manaraa.com

22

2.2 Automata

Automaton is also called state machine. An automaton is a device that is capable of

representing a language according to well-defined rules [Cassandras, C. G. and Lafortune,

S. (1999)]. The simplest and most understandable way to represent an automation is to use

a directed graph, like Figure 1.1. Figure 1.1 gives an incomplete description of an automaton,

where the set of the circles is the state set of the automaton, X = {1, 2, 3}. The set of the

labels next to the arrows is the event set of the automaton. Let a be ”move up”, and b be

”move down”. Then the event set is Σ = {a, b}. The arrows represent the transition function

of the automaton, which we denote as α : X ×E → X :

α(1, a) = 2 α(2, b) = 1

α(2, a) = 3 α(3, b) = 2

The notation α(1, a) = 2 means that if the automaton is in state 1, the upon the occurrence

of event a, the automaton will make an instantaneous transition to state 2.

There are two critical parts missing to complete the definition of an automaton, the initial

state and the marked state(s). Suppose the building has an entrance at the first floor, and the

office is located at the third floor. So people always starts from the first floor and goes to the

third floor. Then, state 1 is the initial state, where the task of going to the office starts, and

state 3 is the marked state, where the task completes. Note that the marked states may be

multiple. Usually we use an arrow with no starting state to point to the initial state, and we

use double cycles to represent the marked states. Figure 2.1 gives the complete representation

of the automaton of the elevator.

1 2

a a

bb

3

Figure 2.1 The complete automaton representing the elevator

www.manaraa.com

23

Formally, an automaton consists of a state set, a finite set of events, a state transition func-

tion which describes the state(s) that are reached when a certain event occurs in a particular

state, an initial state, and a set of marked states [Kumar, R. and Garg, V. K. (1995)]. So an

automaton, denoted as G, is a 5-tuple:

G = (X, Σ, α, x0, Xm),

where X denote the set of states of G, Σ is the (finite) event set of G, α : X × (Σ∪ {ε}) → 2X

is the partial state transition function of G (it is a partial function since it is generally defined

on a subset of X × (Σ ∪ {ε})), x0 ∈ X is the initial state of G, and Xm ⊆ X denotes the

set of marked or accepting state of G [Kumar, R. and Garg, V. K. (1995)]. Here, a state

transition on ε represents a hidden transition, also called an ε-move. Note that the state

transition function does not uniquely determine the resulting state. In this case, G is called a

non-deterministic automaton. And G is said to be deterministic if there is no ε-move and the

transition function can uniquely determine the resulting state. Non-deterministic automata

can be changed into deterministic automata. When Σ is an infinite set, the automaton is called

an infinite automaton. My research is focused on deterministic finite automata. So, in the

following, if not obviously mentioned, the automata are all finite and deterministic.

The generated language of G = (X, Σ, α, x0, Xm) is

L(G) = {s ∈ Σ∗|α(x0, s) is defined}.

The marked language of G is

Lm(G) = {s ∈ L(G)|α(x0, s) ∈ Xm}.

The language L(G) contains all the traces that start from the initial state. A trace is in

L(G) if and only if it has a corresponding path in the transition graph, starting at x0. The

marked language Lm(G) is a subset of L(G). It contains all the traces that start from the initial

www.manaraa.com

24

state and end in one of the marked state. Since the marked states are the desired destinations,

the marked languages represent the completion of some certain tasks. The marked language

is also called the language recognized by the automaton. And the automaton is therefore a

recognizer of the given language.

1 2

a

b

c

Figure 2.2 A simple example to show L(G) and Lm(G)

Let’s look at a simple example showing in Figure 2.2 above. There are two states, state 1

is the initial state, and state 2 is the marked state. And there are three transitions, a, b, and

c. So, the generated language is

L = {a, ac, acc, accc, . . . , ab, aba, abac, abacc, abaccc, . . . , acb, acba, acbac, acbacc, acbaccc, . . .},

and the marked language is

Lm = {a, ac, acc, accc, . . . , aba, abac, abacc, abaccc, . . . , acba, acbac, acbacc, acbaccc, . . .}.

Given two automata G1 := (X1, Σ, α1, x01 , Xm1) and G2 := (X2,Σ, α2, x02 , Xm2), G1 is said

to be a subautomaton of G2, denoted as G1 v G2, if there exists an injective map h : X1 → X2

such that ∀s ∈ L(G1) : h(α1(x01 , s)) = α2(x02 , s).

For traces s and t, we use s vG t to denote that the sets of traces that occur in the generated

and the marked languages of G after s are contained in those after t, i.e., L(G)\s ⊆ L(G)\t and

Lm(G)\s ⊆ Lm(G)\t. We write s ∼=G t if s vG t and t vG s. s ∼=G t implies the equivalence of

the behaviors following s and t, whereas s vG t implies the behaviors following s are subsumed

by the behaviors following t.

For control purposes, the event set of G is partitioned into the set of controllable events

www.manaraa.com

25

Σc ⊆ Σ and the set of uncontrollable events Σu ⊆ Σ. A language K is said to be controllable

(with respect to G and Σu) if pr(K)Σu ∩ L(G) ⊆ pr(K). The events executed by the plant

are filtered by an observation mask M : Σ → ∆ ∪ {ε} that maps the set of events to the set

of ”observed events” (∆). A language K is said to be observable (with respect to G and mask

M) if ∀s, t ∈ pr(K), σ ∈ Σ : M(s) = M(t), sσ ∈ pr(K), tσ ∈ L(G) ⇒ tσ ∈ pr(K). A language

K is said to be relative-closed with respect to G, if pr(K) ∩ Lm(G) = K ∩ Lm(G).

A supervisor is another automaton S := (Y,Σ, β, y0, Ym). The supervised plant is the

synchronous composition of G and S, denoted G||S := (X × Y, Σ, γ, (x0, y0), Xm × Ym), where

for (x, y) ∈ X × Y and σ ∈ Σ, γ((x, y), σ) is defined if and only if both α(x, σ) and β(y, σ)

are defined and in which case, γ((x, y), σ) = (α(x, σ), β(y, σ)). It can be concluded that the

generated and the marked languages of the supervised plant are L(G||S) = L(G) ∩ L(S) and

Lm(G||S) = Lm(G) ∩ Lm(S), respectively.

A supervisor S is said to be

1. nonmarking if Lm(G||S) = L(G||S) ∩ Lm(G),

2. nonblocking if pr(Lm(G||S)) = L(G||S),

3. Σu-compatible if it does not disable any uncontrollable event (equivalently if L(G||S) is

controllable),

4. M -compatible if the controls following the indistinguishable traces are identical (equiva-

lently if L(G||S) is observable),

5. (Σu,M)-compatible if it is both Σu-compatible and M -compatible (See for example [Ku-

mar, R. and Garg, V. K. (1995)]).

It is known that given a nonempty specification language K ⊆ Lm(G), there exists a

(Σu,M)-compatible, nonmarking and nonblocking supervisor if and only if K is relative-closed,

controllable and observable [Lin, F. and Wonham, W. M. (1988)].

www.manaraa.com

26

2.3 Stability

For discrete event systems, there are two forms of stability: state-stability, as introduced

in [Brave, Y. and Heymann, M. (1990)], [Özveren, C. M. and Willsky, A. S. and Antsaklis,

P. J. (1991)], and language-stability, as introduced in [Kumar, R. and Garg, V. K. and

Marcus, S. I. (1993)], [Willner, Y. and Heymann, M. (1995)]. The notion of state-stability

is first introduced below.

Given X̂ ⊆ X, x ∈ X is X̂-attractable in G if there exists a non-negative integer N such

that for all traces t from x that are either deadlocking or have length greater than or equal

to m, t visits X̂. x ∈ X is controllably X̂-attractable in G if there exists a supervisor S such

that x is X̂-attractable in G‖S. We use ΩG(X̂), called the region of attraction of X̂, to denote

the set of all X̂-attractable states, and X̂ is called an attractor for the set ΩG(X̂). We use

Ωc
G(X̂), called the region of controllable attraction of X̂, to denote the set of all controllably

X̂-attractable states, and X̂ is called a controllable attractor for the set Ωc
G(X̂). A state set

X̃ ⊆ X is said to be attractable to X̂ if X̃ ⊆ ΩG(X̂) and controllably attractable to X̂ if

X̃ ⊆ Ωc
G(X̂). Clearly, X̂ ⊆ ΩG(X̂) ⊆ Ωc

G(X̂).

A language L ⊆ Σ∗ is said to be language-stable (`-stable) with respect to language K ⊆ Σ∗,

or converges to K, if there exists m ∈ N such that for all s ∈ L with |s| ≥ m or s deadlocks,

exist s′ ≤ s and v ∈ K with |s′| ≤ m and s = s′v. In this case m is said to be the delay-

bound of convergence. It follows from the definition that L is `-stable with respect to K if for

every trace s ∈ L longer than m or is deadlocking, there exists a prefix of length at most m

after which the corresponding suffix belongs to K. Further, a language L ⊆ Σ∗ is said to be

language-stabilizable (`-stabilizable) with respect to K, if there exists a supervisor S such that

L(G||S) is `-stable with respect to K.

www.manaraa.com

27

CHAPTER 3. A FRAMEWORK FOR FAULT-TOLERANT CONTROL

OF DISCRETE EVENT SYSTEMS

In this chapter, we introduce our study on fault-tolerant supervisory control of discrete

event systems. Given a plant, possessing both faulty and nonfaulty behavior, and a submodel

for just the nonfaulty part, the goal of fault-tolerant supervisory control is to enforce a certain

specification for the nonfaulty plant and another (perhaps more liberal) specification for the

overall plant, and further to ensure that the plant recovers from any fault within a bounded

delay so that following the recovery the system state is equivalent to a nonfaulty state (as if

no fault ever happened). The specification for the overall plant is more liberal compared to

the one for the nonfaulty part since a degraded performance may be allowed after a fault has

occurred.

We formulate this notion of fault-tolerant supervisory control and provide a necessary

and sufficient condition for the existence of such a supervisor. The condition involves the

usual notions of controllability, observability and relative-closure, together with the notion of

stability. An example of a power system is provided to illustrate the framework. We also

propose a weaker notion of fault-tolerance where following the recovery, the system state is

simulated by some nonfaulty state, i.e. behaviors following the recovery are also the behaviors

from some faulty state.

Also, we formulate the corresponding notion of weakly fault-tolerant supervisory control

and present a necessary and sufficient condition (involving the notion of language-stability)

for the its existence. We also introduce the notion of nonuniformly-bounded fault-tolerance

(and its weak version) where the delay-bound for recovery is not uniformly bounded over the

set of faulty traces, and show that when the plant model has finitely many states, this more

www.manaraa.com

28

general notion of fault-tolerance coincides with the one in which the delay-bound for recovery

is uniformly bounded.

3.1 Introduction

In this chapter, we introduce a framework for fault-tolerant supervisory control of DESs.

Given a plant G, possessing both faulty and nonfaulty behavior, and a submodel GN for the

nonfaulty part, the goal of fault-tolerant supervisory control is to enforce a certain specification

KN for the nonfaulty plant GN and another (perhaps more liberal) specification K ⊇ KN for

the overall plant G, and further to ensure that the plant recovers from any fault within a

bounded delay, so that following the recovery the system state is equivalent to a nonfaulty

state (as if no fault ever happened). A fault is modeled as an uncontrollable event, occurrence

of which causes a transition from the nonfaulty part to the faulty part. The specifications K

and KN can be used to specify both the safety and the progress requirements. Since a degraded

performance may be tolerable after the occurrence of a fault, the second specification is more

liberal than the first one (and so it allows a larger set of traces).

In [Lafortune, S. and Lin, F. (1991)], authors considered a pair of specifications, rep-

resenting the desired and the (more liberal) tolerable behavior for a plant G and proposed

a general solution of their problem. In our setting, we also have two specifications: One is

a desired behavior for the system without faults, and the other is a desired behavior for the

system with faults. The control goal in our setting includes also the fault-tolerance: Other

than meeting the respective specifications, the controller needs to ensure that a recovery takes

following any fault within a bounded delay.

There has been some prior work on fault-tolerant control of DESs (see for example [Jensen,

R. M. (2003)]). Some prior approaches involved controller switching upon the occurrence of

a fault as in [Darabi, H. and Jafari, M. A. and Buczak, A. L. (2003)], or re-computation

of a controller as in [Rohloff, K. R. (2005)]. The resulting controlled system can tolerate

some faults but the system performance after faults can remain degraded since the notion of

recovery from faults was not incorporated. Case studies involving synthesis of fault-tolerant

www.manaraa.com

29

supervisors can also be found in [Cho, K. -H. and Lim, J. -T. (1996)], [Cho, K. -H. and Lim,

J. -T. (1998)], [Zhou, M. C. and Dicesare, F. (1989)]. Design of certain coordination protocols

for automated highway systems to achieve fault-tolerance under vehicle failures is reported in

[Lygeros, J. and Godbole, D. N. and Broucke, M. (2000)], [Godbole, D. N. and Lygeros, J.

and Singh, E. and Deshpande, A. and Lindsey, A. E. (2000)]. Takai et al. considered the

problem of reliable decentralized supervisory control [Takai, S. and Ushio, T. (2000)], where

they studied fault-tolerance with respect to the failures of the supervisors. Fault-tolerance

in Petri Net is considered in [Iordache, M. V. and Antsaklis, P. J. (2004)], where liveness

enforcing strategies are designed to deal with failures using system reconfigurations.

Here we consider the general problem of fault-tolerant supervisory control with fault recov-

ery. A supervisor is used not only to enforce certain control specifications but also to ensure

recovery following any fault. We formulate and study the above fault-tolerant control problem

and provide a necessary and sufficient condition for the existence of such a supervisor. The con-

dition involves the usual notions of controllability, observability and relative-closure, together

with the notion of stability. The state-stability property is used to establish bounded delay

recovery from a fault [Brave, Y. and Heymann, M. (1990)], [Özveren, C. M. and Willsky,

A. S. and Antsaklis, P. J. (1991).

As mentioned above, by recovery we imply returning, within bounded delay, to a state that

is equivalent to a nonfaulty state. In some applications, a weaker form of recovery may suffice

where the behaviors following the recovery are also the behaviors from some nonfaulty state.

Thus following the recovery, the system satisfies those properties that are also satisfied by the

behaviors starting from some nonfaulty state. We study this weaker notion of fault-tolerant

control, and give a necessary and sufficient condition for the existence of a weakly fault-tolerant

supervisor. In contrast to the state-stability, the property of language-stability [Kumar, R.

and Garg, V. K. and Marcus, S. I. (1993)], [Willner, Y. and Heymann, M. (1995)] is required.

We also introduce the notion of nonuniformly-bounded fault-tolerance (and its weak ver-

sion) where the delay-bound for recovery is not uniformly bounded over the set of faulty

traces, and show that when the plant model has finitely many states, this more general notion

www.manaraa.com

30

of fault-tolerance coincides with the one in which the delay-bound for recovery is uniformly

bounded.

The objective of our work is the synthesis of a fault-tolerant controller for a given plant,

whereas the work in the computer science community (such as [Arora, A. and Gouda,

M. (1993)], [Arora, A. and Kulkarni, S. S. (1998)], [Attie, P. C. and Arora, A. and Emerson,

E. A. (2004)]) considers the design of a system (a ”plant”) that is fault-tolerant. In [Arora, A.

and Kulkarni, S. S. (1998)], [Attie, P. C. and Arora, A. and Emerson, E. A. (2004)], a system

is said to be nonmasking fault-tolerant if after the occurrence of a fault the system specification

is eventually satisfied. This is analogous to the notion of fault-tolerance we consider. [Arora,

A. and Kulkarni, S. S. (1998)], [Attie, P. C. and Arora, A. and Emerson, E. A. (2004)]

also considers the stronger notion of masking fault-tolerance which requires that the system

specifications remain satisfied even after the occurrence of a fault. This stronger property can

also be captured in our setting by requiring that the two specifications K and KN represent

the same property.

3.2 Fault-Tolerant Supervisory Control

In this section, we introduce a notion of fault-tolerant supervisory control. Consider

a plant with model G = (X, Σ, α, x0, Xm) which represents the behavior prior to as well as

subsequent to faults, i.e., the overall behavior. Let the nonfaulty part of the plant G be

modeled as GN = (XN , Σ, αN , x0, X
N
m). Without loss of generality, GN v G, i.e., GN is a

subautomaton of G. The pair (G,GN) is said to be fault-tolerant if every post-fault behavior

becomes equivalent to a nonfaulty behavior in a uniformly bounded delay. This property is

captured as follows:

Definition 1 Given a plant G with its nonfaulty part GN , (G,GN) is said to be fault-tolerant

if exists m ∈ N such that for s ∈ L(G) − L(GN), st ∈ L(G) with |t| ≥ m or st deadlocks,

there exist u ∈ L(GN) and t′ ≤ t with |t′| ≤ m and st′ ∼=G u. In this case, m is called the

delay-bound of fault-tolerance.

www.manaraa.com

31

Figure 3.1 Automaton G and its corresponding Gmin

The plant represented as the pair (G,GN) is fault-tolerant if within a uniformly bounded

delay of the occurrence of a fault, the plant state returns to a state equivalent to a nonfaulty

state. Then the ensuing behavior is such that no fault ever happened. Therefore, after recovery,

the system assumes full functionality. When the system model is minimal, i.e., possessing a

minimal number of states, this means that following recovery, the system reaches a nonfaulty

state. This, however, may not hold in general as shown in Figure 3.1, where Gmin represents

a minimal model of G. (The dashed edges represent uncontrollable transitions.) Following a

fault, Gmin recovers to a nonfaulty state in one transition and so clearly it is fault-tolerant.

This is not the case for the model G but, being behaviorally equivalent to Gmin, G is also

fault-tolerant. (In Figure 3.1, state x̄ is equivalent to nonfaulty state x.) Our definition is

behavior-based and captures this situation.

The following example illustrates a fault-tolerant plant model.

Example 1 Consider the plant G and its nonfaulty part GN shown in Figure 3.2 that models a

machine. Initially the machine is idle and nonfaulty. The start event a transitions the machine

to working and nonfaulty state, and the stop event b brings it back to the initial state. In

the working and nonfaulty state, an occurrence of the fault event f causes the machine to

transition to the working and faulty state. An execution of b at this state causes the machine

to move to the idle and faulty state from where the repair event c brings the machine back

to the initial state. An execution of the repair event in the idle and nonfaulty state does not

change the machine state. It can be verified that G is minimal.

When there is an exit from the nonfaulty part due to the execution of f , a return within

www.manaraa.com

32

a bounded delay is not guaranteed since there exists a cycle between the two faulty states. It

follows that (G, GN) is not fault-tolerant.

Figure 3.2 Plant G and its nonfaulty part GN

The above notion of fault-tolerance is a type of state-stability property. This is established

in the following theorem.

Theorem 1 Consider a plant G = (X, Σ, δ, x0, Xm) and its nonfaulty part

GN = (XN , Σ, δN , x0, X
N
m), and suppose the corresponding minimal plant and its nonfaulty

part are Gmin = (Xmin, Σ, δmin, x0,min, Xm,min) and GN
min = (XN

min,Σ, δN
min, x0,min, XN

m,min)

respectively. (G,GN) is fault-tolerant if and only if Xmin is attractable to XN
min, i.e., Xmin ⊆

ΩGmin(XN
min).

Proof: Since Gmin and GN
min are minimal models of G and GN , L(Gmin) = L(G),

L(GN
min) = L(GN), and since for any s, t ∈ L(G) = L(Gmin), [s ∼=G t] ⇔ [s ∼=Gmin t].

Therefore, (G,GN) is fault-tolerant if and only (Gmin, GN
min) is fault-tolerant.

Also note that Xmin ⊆ ΩGmin(XN
min) is equivalent to Xmin −XN

min ⊆ ΩGmin(XN
min).

(⇒) Pick s ∈ L(Gmin)− L(GN
min). Since s ∈ L(Gmin)− L(GN

min), exists x ∈ Xmin −XN
min

such that δmin(x0, s) = x. Since x ∈ Xmin−XN
min ⊆ ΩGmin(XN

min), exists m > 0 such that, for

all t, for which δmin(x, t) is defined and either |t| ≥ m or δmin(x, t) is deadlocking, exists t′ ≤ t

such that δmin(x, t′) ∈ XN
min. It shows that m is the desired delay bound for fault-tolerance.

To see this, pick t such that st ∈ L(Gmin) and either |t| ≥ m or st is deadlocking. Then

δmin(x, t′) ∈ XN
min for some t′ ≤ t. Let u ∈ L(GN

min) be such that δmin(x0, u) = δmin(x, t′).

Then u and st′ reach the same state in Gmin, so u ∼=Gmin st′.

www.manaraa.com

33

(⇐) Now assuming (Gmin, GN
min) to be fault-tolerant, we establish that Xmin − XN

min ⊆
ΩGmin(XN

min). Pick x ∈ Xmin − XN
min. Then there exists s ∈ L(Gmin) − L(GN

min) such that

δmin(x0, s) = x. From the fault-tolerance of (Gmin, GN
min), there exists m > 0 such that, for

all t with st ∈ L(Gmin) and either |t| ≥ m or st is deadlocking, exists u ∈ L(GN
min) and t′ ≤ t

satisfying u ∼=Gmin st′. From the minimality of Gmin, equivalence of u and st′ implies they

reach the same state. Since u ∈ L(GN
min), δmin(x0, st

′) = δmin(x0, u) ∈ XN
min. It follows that,

for each t such that δmin(x, t) is defined, and |t| ≥ m or δmin(x, t) is deadlocking, exist t′ ≤ t

such that δmin(x, t′) ∈ XN
min. This implies Xmin −XN

min ⊆ ΩGmin(XN
min).

A given plant (G,GN) may not be intrinsically fault-tolerant but could be made so through

the use of control. This motivates us to formulate the notion of a fault-tolerant supervisor,

which exercises appropriate control actions so that the controlled plant (G||S, GN ||S) is fault-

tolerant. The control actions of a fault-tolerant supervisor ensure that following any fault, a

recovery takes place within a bounded number of steps, i.e., the controlled plant state returns

to a state from where the future behaviors are such that as if no fault ever happened.

Definition 2 Given a plant G with its nonfaulty part GN , a supervisor S is said to be fault-

tolerant if (G||S, GN ||S) is fault-tolerant.

The following example illustrates the notion of fault-tolerance of a supervisor.

Example 2 Consider the example of Figure 3.2. The start event a is controllable and disabled

by a supervisor S at the idle and faulty state. The controlled systems (G‖S, GN‖S) is shown

in Figure 3.3. It can be the seen that from any faulty state a return to some nonfaulty state is

guaranteed within at most two transitions, i.e., (G‖S,GN‖S) is fault-tolerant, or equivalently,

S is a fault-tolerant supervisor for (G,GN).

The following corollary follows from Theorem 9.

Corollary 1 Given a plant G and its nonfaulty part GN , and their corresponding minimal

plant Gmin and GN
min, exists a fault-tolerant supervisor S if and only if Xmin ⊆ Ωc

Gmin
(XN

min).

www.manaraa.com

34

Figure 3.3 Controlled plant (G‖S, GN‖S)

Proof: Xmin ⊆ Ωc
Gmin

(XN
min) if and only if exists supervisor S such that

Xmin ⊆ ΩGmin‖S(XN
min), or equivalently exists supervisor S such that (Gmin‖S, GN

min‖S) is

fault-tolerant. (The last equivalence follows from Theorem 9.)

3.3 Existence of Fault-Tolerant Supervisor

The previous section formulated the notion of a fault-tolerant supervisor as one that

ensures recovery from a fault within a bounded number of steps. In general, a supervisor

needs to enforce certain other control specifications. For example in Figure 3.3, the plant

possesses certain illegal and certain final states. The supervisor must also ensure that the

illegal states are never visited while the final states are always reachable. To capture such

control requirements, we use a pair of specification languages KN ⊆ Lm(GN) and K ⊆ Lm(G)

satisfying KN ⊆ K. Here KN represents the control specification for the nonfaulty plant, and

a different control specification, namely K, is used for the overall plant. This specification is

taken to be “more liberal” (K ⊇ KN) since a downgraded performance may be tolerable after

a fault has occurred.

Thus a fault-tolerant supervisory control problem is formulated as follows: Given a plant

G, its nonfaulty part GN , specifications K and KN (with KN ⊆ K), find a nonmarking,

nonblocking, (Σu,M)-compatible and fault-tolerant supervisor S such that Lm(GN ||S) = KN

and Lm(G||S) = K.

A necessary and sufficient condition for this is provided in the following theorem.

Theorem 2 Given a plant G = (X, Σ, α, x0, Xm) with nonfaulty part

GN = (XN , Σ, αN , x0, X
N
m), specification ∅ 6= K ⊆ Lm(G) for G and specification ∅ 6= KN ⊆

www.manaraa.com

35

Lm(GN) for GN satisfying KN ⊆ K, there exists a nonmarking, nonblocking (with respect to

both GN and G), (Σu,M)-compatible and fault-tolerant supervisor S such that

1. Lm(GN ||S) = KN , L(GN ||S) = pr(Lm(GN ||S)), and

2. Lm(G||S) = K and L(G||S) = pr(Lm(G||S))

if and only if

1. K is relative-closed, controllable and observable with respect to G,

2. In a minimal R = (Q,Σ, α, q0, Qm) and RN = (QN , Σ, αN , q0, Q
N
m) with RN v R,

Lm(RN) = KN , and Lm(R) = K, it holds that Q ⊆ ΩR(QN),

3. KN = K ∩ Lm(GN), and pr(KN) = pr(K) ∩ L(GN).

Proof: From [Kumar, R. and Garg, V. K. (1995)], we know there exists a (Σu,M)-

compatible, nonmarking and nonblocking supervisor S such that Lm(G||S) = K and L(G||S) =

pr(K) if and only if K is relative-closed, controllable and observable with respect to G. R and

RN accept the same languages as G||S and GN ||S, and they are minimal. From Theorem 9, we

know (G‖S,GN‖S) is fault-tolerant if and only if in a minimal model ((G‖S)min, (GN‖S)min) =

(R, RN) it holds that Q ⊆ ΩR(QN).

So we only need to show that given Lm(G‖S) = K and L(G‖S) = pr(K), we have

Lm(GN‖S) = KN and L(GN‖S) = pr(KN) if and only if K and KN are constrained by

KN = K ∩Lm(GN) and pr(KN) = pr(K)∩L(GN). This follows from the following two series

of equalities.

KN = Lm(GN ||S)

= Lm(GN) ∩ Lm(S)

= Lm(GN) ∩ Lm(S) ∩ Lm(G)

= Lm(GN) ∩ Lm(G||S)

= Lm(GN) ∩K, and

www.manaraa.com

36

pr(KN) = L(GN ||S)

= L(GN) ∩ L(S)

= L(GN) ∩ L(S) ∩ L(G)

= L(GN) ∩ L(G||S)

= L(GN) ∩ pr(K).

Remark 1 In Condition 1 of Theorem 2, the relative-closure property can be checked in

O(|G||R|) [Kumar, R. and Garg, V. K. (1995)], the controllability property can be checked

in O(|G||R|), and observability property can be checked in O(|G||R|2). Condition 2 can be

checked in O(|Q|) [Brave, Y. and Heymann, M. (1990)]. Both parts of Condition 3 can be

checked in O(|G||R|). (The two parts of condition can be checked by checking in G‖R whether

XN
m ×Qm ⊆ XN

m ×QN
m and XN ×R ⊆ XN × RN , respectively.) Thus the overall complexity

of verifying the condition of Theorem 2 is O(|G||R|2).

In Theorem 2 it is required that the supervisor be nonblocking with respect to both the

nonfaulty plant and the overall plant. It turns out that due to the additional requirement of

fault-tolerance, the requirement of nonblockingness with respect to the overall plant may be

dropped, without altering the nature of the control problem. In other words, the following

result holds.

Theorem 3 Given a plant G = (X, Σ, α, x0, Xm) with nonfaulty part

GN = (XN , Σ, αN , x0, X
N
m), there exists a nonblocking and fault-tolerant supervisor S such

that L(GN ||S) = pr(Lm(GN ||S)) and L(G||S) = pr(Lm(G||S)) if and only if there exists a

nonblocking and fault-tolerant supervisor S such that L(GN ||S) = pr(Lm(GN ||S)).

Proof: Clearly, the necessity (⇒) holds. We only need to prove the sufficiency (⇐) by

showing L(G||S) ⊆ pr(Lm(G||S)).

www.manaraa.com

37

To see this, pick any s ∈ L(G||S). Then either s ∈ L(GN ||S) in which case

s ∈ pr(Lm(GN ||S)) ⊆ pr(Lm(G||S)), or s ∈ L(G||S) − L(GN ||S). In the latter case, s is a

faulty trace and let m be the delay-bound of fault-tolerance. Consider an extension t of s such

that st ∈ L(G||S), and |t| ≥ m or st deadlocks. In either case, there exists u ∈ L(GN ||S) =

pr(Lm(GN ||S)) and t = t′v such that |t′| ≤ m and uv ∈ L(G||S). Since u ∈ pr(Lm(GN ||S)),

there exists v ∈ Lm(GN ||S)\{u} ⊆ Lm(G||S)\{u} = Lm(G||S)\{st′}. So it follows that

st′ ∈ pr(Lm(G||S)), which implies s ∈ pr(Lm(G||S)).

In Theorem 2, we allowed (K, KN) to be an arbitrary pair of languages, and together they

can capture both safety and liveness requirements. In some applications, the specification for

the overall plant can simply be a safety specification, i.e., K = pr(K). Theorem 2 can be

specialized to address this situation resulting in the following corollary:

Corollary 2 Given a plant G = (X, Σ, α, x0, Xm) with nonfaulty part

GN = (XN , Σ, αN , x0, X
N
m), specification ∅ 6= K ⊆ Lm(G) for G and specification ∅ 6=

KN ⊆ Lm(GN) for GN satisfying KN ⊆ K, there exists a nonmarking, nonblocking, (Σu,M)-

compatible and fault-tolerant supervisor S such that

1. Lm(GN ||S) = KN , L(GN ||S) = pr(Lm(GN ||S)), and

2. L(G||S) = K.

if and only if

1. K is prefix-closed, controllable and observable with respect to G,

2. In a minimal R = (Q,Σ, α, q0, Qm) and R = (QN , Σ, αN , q0, Q
N
m) with RN v R, Lm(RN) =

KN and L(R) = K, it holds that Q−QN ⊆ ΩR(QN),

3. KN = K ∩ Lm(GN), and

4. pr(KN) = K ∩ L(GN).

The proof of Corollary 2 is similar to that of Theorem 2 and is omitted for brevity.

www.manaraa.com

38

3.4 Application Example

We provide an application to illustrate our fault-tolerant control framework developed

above by examining an abstracted model of a power system [Anderson, P. M. and Fouad,

A. A. (1994)] shown in Figure 3.4. In this system, there are three generators (G1, G2 and G3)

and three loads (Load A, B and C), connected by nine buses (1 - 9).

Figure 3.4 A 9-bus power system

The states of a power system are typically categorized into six different classes depending

on the stability, safety, performance, and security margin properties they possess (as shown

in the table below). Stability of the system refers to the stability of the individual generators.

Safety refers to the line powers and bus voltages being within an acceptable threshold. The

system is said to have normal performance when all load demands are met, and otherwise the

performance is said to be Degraded (as some loads may be shed and some generators may be

switched-off). Security Margin refers to the margin by which system load may be increased

without violating stability or safety.

A normal state is one where system behavior is acceptable with respect to all four properties,

and security margin is large enough that the occurrence of a single fault keeps the system

behavior acceptable. An alert state is one where the system behavior is acceptable but security

margin is small so that the occurrence of a single fault causes the system behavior to become

unacceptable (i.e., one of the four properties may be violated). An emergency state is one where

www.manaraa.com

39

Table 3.1 State categories

Category Stable Safe Performance Margin
Normal (N) yes yes normal large
Alert (A) yes yes normal small

Emergency (E) yes no - -
In-extremis (I) no - - -
Recovery (R) yes yes Degraded -

Failed (F) - - None -

stability is not violated but safety is violated, whereas an in-extremis is state is one where the

stability is violated. A recovery state is one where safety and stability are not violated but

the system performance is downgraded. Finally a failed state is one where the system is out-of

service.

Some features of the power system shown in Figure 3.4 are listed below:

1. The feasible uncontrollable events are the two line-faults:

Table 3.2 List of faults in power system example

f1 Power line between buses 5 & 7 faulted
f2 Power line between buses 5 & 4 faulted

2. The feasible controllable events are:

Table 3.3 List of controllable events in power system example

c Switch-on capacitor at bus 5
c Switch-off capacitor at bus 5
p0 Switch-on power control at generators/loads prior to the critical time
p1 Switch-on power control at generators/loads after the critical time
p Switch-off power control at generators/loads
r Repair a faulted line (when system is stable)

3. States are abstracted to represent the values of the 4 binary state-variables: {s1s2s3s4},
the meaning of which is listed as follows:

www.manaraa.com

40

Table 3.4 Meaning of state variables in power system example

Variable Meaning 1 0
s1 Line 5-9 disconnected? yes no
s2 Line 5-4 disconnected? yes no
s3 capacitor control on? yes no
s4 power control on? yes no

There is an additional special state, namely the “Failed” state denoted as “F”, in which

the system is out-of-service.

4. No control is exercised that takes the system to a “worse” state (for example, the control

action of “switching off the capacitor” is not allowed in the alert state 1010 as this will

cause a transition to the emergency state 1000).

5. We assume that no fault occurs in a recovery state.

The abstracted model of the power system is shown in Figure 3.5. In Figure 3.5,

Figure 3.5 Model of power system of Figure 3.4

www.manaraa.com

41

there are 16 “non-failed” states, and depending on their stability, safety, performance, and

security margin properties are classified into one of five categories: normal (0010), alert (0000,

1010, 0110), recovery (---1), emergency (1000, 0100), and in-extremis (11-0). (Note that “-”

represents a 0 or a 1.) In Figure 3.5 all solid edges are controllable and all dashed edges

are uncontrollable. The only uncontrollable events are the two line-fault events. All events

including the line-fault events are observable. (When a line-fault occurs, the circuit breakers

at the ends of the line open-up to disconnect that line and that information can be used to

determine the occurrence of a line-fault.)

The normal operation corresponds to no faults (s1 = s2 = 0), capacitive control on (s3 = 1),

and power control off (s4 = 0). In this state the system behaves acceptable and has large

security margin. Switching the capacitive control off or the occurrence of a single fault causes

the security margin to become smaller and the system transitions to one of the alert states

0000 (when capacitive control is switched off), or 1010 (when fault f1 occurs), or 0110 (when

fault f2 occurs). In state 0000 no fault has occurred but the capacitive control is off. Due

to this, the occurrence of either fault f1 or f2 causes the system to violate safety (voltage at

bus 5 dipping below a threshold) and transitions the system to an emergency state (1000 or

0100). On the other hand, in the normal state (0010), the occurrence of a single fault results

in state (1010) or (0110), both of which offer acceptable behavior (no voltage dipping takes

place due to the capacitive control being on). However, the occurrence of a second fault in

one of these two alert states causes the system to transition to an in-extremis state (1110),

where the system loses stability. Similarly, the occurrence of a second fault from one of the

emergency states (1000 or 0100) causes the system to also lose stability, transiting it to an

in-extremis state (1100). In an in-extremis state, system has lost stability and if the power

control (generation/load shut-down) is not exercised in a timely fashion (before the “critical

fault clearance” time), the system reaches the Failed state. Otherwise (if the power control

is exercised in a timely fashion), the system acquires stability and safety but its performance

is degraded (some generators/loads are tripped/shed). Thus a recovery state corresponds to

a state where power control is on, i.e., s4 = 1. A combination of repair of faulted lines and

www.manaraa.com

42

re-energization of generators/loads causes the power system to recover to its normal operating

mode.

Figure 3.6 Nonfaulty part GN of power system

In Figure 3.5, the overall plant model G has 17 states, and the nonfaulty part GN consists

of the states where no fault has occurred, i.e., the states with label (00–), which includes the

normal state (0010), one of the alert states (0000), and two recovery states (0001, and 0011).

The model for GN is shown separately in Figure 3.6. The specification K for the overall plant

excludes all traces that reach the Failed state, i.e., the Failed state is deemed forbidden for the

overall plant. Among the four states of GN , the normal state (0010) is deemed a final state,

i.e., KN excludes all traces of GN that end at a non-final state. Clearly, KN ⊆ K.

A fault-tolerant supervisor can be shown to exist and the controlled system under such a

supervisor is shown in Figure 3.7. Each state is labeled with the maximal number of steps it

takes to reach a state of GN . As one can see, the system recovers in no more than 4 transitions,

i.e, the delay-bound of recovery is 4 steps.

3.5 Weakly Fault-Tolerant Supervisory Control

In certain applications, a weaker form of recovery may suffice, namely, the recovery

should cause the system to reach a state which is “simulated” by a nonfaulty state. That is,

behaviors starting from a state after recovery be subsumed by those starting from a nonfaulty

state. Then any safety and liveness property that the system satisfies starting from such a

www.manaraa.com

43

Figure 3.7 Supervised power system

nonfaulty state is also satisfied by the system starting from the state after recovery. This

motivates us to introduce a weaker form of fault-tolerance. It turns out that this weaker

form of fault-tolerance can be expressed as a second type of stability property, namely the

language-stability property. The notion of weak fault-tolerance is captured as follows:

Definition 3 Given a plant G with its nonfaulty part GN , (G,GN) is said to be weakly fault-

tolerant if exists m ∈ N such that for s ∈ L(G) − L(GN), st ∈ L(G) with |t| ≥ m or st

deadlocks, exists u ∈ L(GN) and t′ ≤ t with |t′| ≤ m and st′ vG u. In this case, m is called

the delay-bound of weakly fault-tolerance.

The following example illustrates a system that is weakly fault-tolerant but not fault-

tolerant.

Example 3 Let us reconsider (G,GN) shown in Figure 3.2, which as we discussed above is not

fault-tolerant (due to the presence of the cycle in the faulty part). However after the transition

on f , the state 3 is reached, from where all executable traces are also executable starting from

www.manaraa.com

44

the nonfaulty state 2, i.e., the faulty state 3 is simulated by the nonfaulty state 2. To see

this consider the behaviors following a faulty trace saf , where s ∈ (c∗ + (ab)∗)∗. Then we

claim that those behaviors are also possible following the nonfaulty trace sa, i.e., saf vG sa.

The reason being that following the execution of saf , the system ultimately executes a trace

in (ba)∗bc which brings the system to state 2, whereas the execution of any trace in (ba)∗bc

following the trace sa also brings the system to state 2.

The above notion of weak fault-tolerance can be regarded as a type of language conver-

gence property, as demonstrated by the next theorem. The basic idea is that the post-fault

behavior, in a finite number of steps, matches a behavior that is a possible prior to the oc-

currence of a fault. In other words, the behaviors executable after a post-fault behavior are

also executable after the nonfaulty behaviors. Since the matching of behavior following a

finite execution is precisely the notion of language convergence, the weak fault-tolerance prop-

erty can be described as a language convergence property. The faulty behavior is given by,

L(G)− L(GN). The post-fault behavior has thus the following two parts, the generated part,

L(G)\[L(G)− L(GN)], and the marked part, Lm(G)\[L(G)− L(GN)]. Similarly the behavior

after no fault has occurred also has two parts, namely L(G)\L(GN) and Lm(G)\L(GN). For

the plant to be weakly fault-tolerant, traces in generated (resp., marked) post-fault behavior

should converge to traces in generated (resp., marked) behavior prior to the occurrence of a

fault. This is captured in the following theorem.

Theorem 4 Given a plant G and its nonfaulty part GN , (G,GN) is weakly fault-tolerant

if and only if L(G)\[L(G) − L(GN)] converges to L(G)\L(GN) and Lm(G)\[L(G) − L(GN)]

converges to Lm(G)\L(GN).

Proof: First we show that if (G,GN) is weakly fault-tolerant, then there exists m ∈ N
such that for each t ∈ L(G)\[L(G) − L(GN)] with either |t| ≥ m or t deadlocks, there exists

t′ ≤ t and v ∈ L(G)\L(GN) such that t = t′v and |t′| ≤ m. We claim that m can be chosen to

be the delay-bound of weak fault-tolerance.

www.manaraa.com

45

Since t ∈ L(G)\[L(G) − L(GN)], there exists s ∈ L(G) − L(GN) such that st ∈ L(G).

Further since |t| ≥ m or t deadlocks, from fault-tolerance of (G,GN), there exists u ∈
L(GN) and t = t′v: (|t′| ≤ m and st′ vG u). Since st′v ∈ L(G) and u ∈ L(GN), it follows that

uv ∈ L(G), therefore v ∈ L(G)\L(GN), as desired.

Similarly, it can be shown that if (G,GN) is weakly fault-tolerant with delay-bound of

fault-tolerance m, then t ∈ Lm(G)\[L(G) − L(GN)] with |t| ≥ m or t deadlocks, implies

t = t′v with |t′| ≤ m and v ∈ Lm(G)\L(GN). As above there exists s ∈ L(G) − L(GN)

such that st ∈ Lm(G). Invoking the fault-tolerance property and noting that st ∈ Lm(G), we

can conclude that t = t′v such that |t′| ≤ m and uv ∈ Lm(G) for some u ∈ L(GN). Since

u ∈ L(GN) and uv ∈ Lm(G), it follows that v ∈ Lm(G)\L(GN), as desired.

In order to prove the sufficiency, we show that the delay-bound m of fault-tolerance can

be chosen to be the same as the delay-bound of convergence of L(G)\[L(G) − L(GN)] to

L(G)\L(GN) and of Lm(G)\[L(G)− L(GN)] to Lm(G)\L(GN).

For s ∈ L(G) − L(GN) pick an extension t such that st ∈ L(G) and either |t| ≥ m or st

deadlocks. Then t ∈ L(G)\[L(G)−L(GN)] and from the convergence of L(G)\[L(G)−L(GN)]

to L(G)\L(GN), we have t = t′v with |t′| ≤ m and v ∈ L(G)\L(GN). The latter further

implies the existence of u ∈ L(GN) such that uv ∈ L(G). Therefore, L(G)\st′ ⊆ L(G)\u, as

desired.

It remains to show that if st ∈ Lm(G), then uv ∈ Lm(G). This requires the second

convergence property. First note that st ∈ Lm(G) and s ∈ L(G) − L(GN) implies t ∈
Lm(G)\[L(G)−L(GN)]. So from convergence of Lm(G)\[L(G)−L(GN)] to Lm(G)\L(GN), it

follows that t = t′v with |t′| ≤ m and v ∈ Lm(G)\L(GN). v ∈ Lm(G)\L(GN) further implies

the existence of u ∈ L(GN) such that uv ∈ Lm(G). Therefore, Lm(G)\st′ ⊆ Lm(G)\u, as

desired.

A given plant (G,GN) may not be intrinsically weakly fault-tolerant but could be made

so through the use of control. This motivates us to formulate the notion of a weakly fault-

tolerant supervisor, which exercises appropriate control actions so that the controlled plant

(G||S,GN ||S) is weakly fault-tolerant. The control actions of a weakly fault-tolerant supervisor

www.manaraa.com

46

ensure that following any fault, a recovery takes place within a bounded number of states, i.e.,

the controlled plant reaches a state, starting from where the executable behaviors are also

executable starting from a nonfaulty state.

Definition 4 Given a plant G with its nonfaulty part GN , a supervisor S is said to be weakly

fault-tolerant if (G||S, GN ||S) is weakly fault-tolerant.

The following corollary follows from Theorem 4.

Corollary 3 Given a plant G and its nonfaulty part GN , a supervisor S is weakly fault-

tolerant if and only if L(G||S)\[L(G||S) − L(GN ||S)] converges to L(G||S)\L(GN ||S) and

Lm(G||S)\[L(G||S)− L(GN ||S)] converges to Lm(G||S)\L(GN ||S).

3.6 Existence of Weakly Fault-Tolerant Supervisor

Using the results of the previous section, we next present a condition for the existence of

weakly fault-tolerant supervisor. As before, the supervisor is required to impose a specification

KN on the nonfaulty plant GN and a possibly more liberal specification K ⊇ KN on the overall

plant. We have the following existence result.

Theorem 5 Given a plant G = (X, Σ, α, x0, Xm) with nonfaulty part

GN = (XN , Σ, αN , x0, X
N
m), specification ∅ 6= K ⊆ Lm(G) for G and specification ∅ 6= KN ⊆

Lm(GN) for GN satisfying KN ⊆ K, there exists a nonmarking, nonblocking (with respect to

both GN and G), (Σu,M)-compatible and weakly fault-tolerant supervisor S such that

1. Lm(GN ||S) = KN , L(GN ||S) = pr(Lm(GN ||S)), and

2. Lm(G||S) = K and L(G||S) = pr(Lm(G||S))

if and only if

1. K is relative-closed, controllable and observable with respect to G,

2. pr(K)\[pr(K) − pr(KN)] converges to pr(K)\pr(KN), and K\[pr(K) − pr(KN)] con-

verges to K\pr(KN),

www.manaraa.com

47

3. KN = K ∩ Lm(GN), and pr(KN) = pr(K) ∩ L(GN).

Proof: From [Kumar, R. and Garg, V. K. (1995)], we know there exists a (Σu,M)-

compatible, nonmarking and nonblocking supervisor S such that Lm(G||S) = K and L(G||S) =

pr(K) if and only if K is relative-closed, controllable and observable with respect to G. Also

from Theorem 9, we know S is weakly fault-tolerant such that Lm(GN ||S) = KN , L(GN ||S) =

pr(KN), Lm(G||S) = K and L(G||S) = pr(K) if and only if pr(K)\[pr(K)−pr(KN)] converges

to pr(K)\pr(KN) and K\[pr(K)− pr(KN)] converges to K\pr(KN).

So we only need to show given Lm(G||S) = K and L(G||S) = pr(K), we have Lm(GN ||S) =

KN and L(GN ||S) = pr(KN) if and only if K and KN are constrained by KN = K ∩Lm(GN)

and pr(KN) = pr(K) ∩ L(GN). This is something we proved as part of the proof of Theorem

2.

Remark 2 The complexity of checking conditions 1 and 3 of Theorem 5 are discussed in

Remark 1. Here we only discuss the complexity of checking the second condition. The lan-

guages appearing in the second condition can be recognized using automata of size O(|Q|).
This is because the automaton (Q,Σ, δ,Q − QN , Qm) (i.e., R with its initial state replaced

by the set Q − QN) generates the language pr(K)\[pr(K) − pr(KN)] and marks the lan-

guage K\[pr(K)− pr(KN)], whereas the automaton (Q,Σ, δ,QN , Qm) (i.e., R with its initial

state replaced by the set QN) generates the language pr(K)\pr(KN) and marks the language

K\pr(KN).

Note that the automata (Q,Σ, δ,Q−QN , Qm) and (Q,Σ, δ,QN , Qm) are nondeterministic

due to the non-uniqueness of the initial state. In order to verify the language convergence

properties of Condition 2, the algorithm given in [Willner, Y. and Heymann, M. (1995)]

can be adapted to the nondeterministic setting to verify whether the language K\[pr(K) −
pr(KN)] marked by (Q,Σ, δ,Q − QN , Qm) converges to the language K\pr(KN) marked by

(Q,Σ, δ,QN , Qm) as follows: We construct the automaton T := (Z, Σ, γ, Z0, Zm), where

Z = Q× 2Q,

Z0 = {(q,QN)|q ∈ Q−QN},

www.manaraa.com

48

Zm = {(q, Q̂)|q ∈ Qm, Q̂ ∩Qm 6= ∅}, and

∀q ∈ Q, Q̂ ⊆ Q, σ ∈ Σ : γ((q, Q̂), σ) := (δ(q, σ), δ(Q̂, σ) ∪QN).

Let Ẑ := {(q, Q̂) | Lm(R, q) ⊆ Lm(R, Q̂)}, where Lm(R, q) is the language marked by R starting

from the state q, and Lm(R, Q̂) := ∪
q̂∈Q̂

Lm(R, q̂). Note Lm(T) = Lm((Q,Σ, δ,Q−QN , Qm)) =

K\[pr(K)−pr(KN)], and a trace t ∈ Lm(T) ends at a state (q, Q̂) ∈ Ẑ if and only if t possesses

a suffix v ∈ Lm((Q,Σ, δ,QN , Qm)) = K\pr(KN). Then following the results in [Willner, Y.

and Heymann, M. (1995)] it can be shown that K\[pr(K)−pr(KN)] converges to K\pr(KN)

if and only if Z ⊆ Ω(Ẑ). Next by simply replacing Qm with Q in the convergence test just

described, we can obtain a test for verifying whether pr(K)\[pr(K) − pr(KN)] converges to

pr(K)\pr(KN). The complexity of checking the language convergence properties of Condition

2 can accordingly concluded to be O(|Q|2(2|Q|)2).

In Theorem 5 it is required that the supervisor be nonblocking with respect to both the

nonfaulty plant and the overall plant. It turns out that due to the additional requirement of

fault-tolerance, the requirement of nonblockingness with respect to the overall plant may be

dropped, without altering the nature of the control problem. In other words, the following

result holds.

Theorem 6 Given a plant G = (X, Σ, α, x0, Xm) with nonfaulty part

GN = (XN , Σ, αN , x0, X
N
m), there exists a nonblocking and fault-tolerant supervisor S such

that L(GN ||S) = pr(Lm(GN ||S)) and L(G||S) = pr(Lm(G||S)) if and only if there exists a

nonblocking and fault-tolerant supervisor S such that L(GN ||S) = pr(Lm(GN ||S)).

Proof: Clearly, the necessity (⇒) holds. We only need to prove the sufficiency (⇐) by

showing L(G||S) ⊆ pr(Lm(G||S)).

To see this, pick any s ∈ L(G||S). Then either s ∈ L(GN ||S) in which case

s ∈ pr(Lm(GN ||S)) ⊆ pr(Lm(G||S)), or s ∈ L(G||S) − L(GN ||S). In the latter case, s is a

faulty trace and let m be the delay-bound of fault-tolerance. Consider an extension t of s such

that st ∈ L(G||S). Without loss of generality, |t| ≥ m or st deadlocks. In either case, there

exists u ∈ L(GN ||S) = pr(Lm(GN ||S)) and t = t′v such that |t′| ≤ m and uv ∈ L(G||S). Since

www.manaraa.com

49

u ∈ pr(Lm(GN ||S)), there exists v ∈ Lm(GN ||S)\{u} ⊆ Lm(G||S)\{u} = Lm(G||S)\{st′}. So

it follows that st′ ∈ pr(Lm(G||S)), which implies s ∈ pr(Lm(G||S)).

The following corollary is a specialization of Theorem 5, where the specification K for the

overall plant is simply a safety specification (so that K = pr(K)).

Corollary 4 Given a plant G = (X, Σ, α, x0, Xm) with nonfaulty part

GN = (XN , Σ, αN , x0, X
N
m), specification ∅ 6= K ⊆ Lm(G) for G and specification ∅ 6=

KN ⊆ Lm(GN) for GN satisfying KN ⊆ K, there exists a nonmarking, nonblocking, (Σu,M)-

compatible and weakly fault-tolerant supervisor S such that

1. Lm(GN ||S) = KN , L(GN ||S) = pr(Lm(GN ||S)), and

2. L(G||S) = K.

if and only if

1. K is prefix-closed, controllable and observable with respect to G,

2. K\[K − pr(KN)] converges to K\pr(KN),

3. KN = K ∩ Lm(GN), and pr(KN) = K ∩ L(GN).

3.7 Application Example (Continued)

In order to illustrate weakly fault-tolerant control we revisit the power system con-

sidered in Section 4.6. We relax one of the assumptions that a fault cannot occur in one of the

recovery states. The corresponding revised model of the power system is shown in Figure 3.8.

Note the revised model has extra fault transitions.

It can be verified that reaching the recovery state 1101 or 1111 cannot be avoided starting

from a nonfaulty state. If the initial nonfaulty state is the normal state or the alert state,

then an in-extremis state 1110 or 1100 is reached uncontrollably (through a sequence of two

faults), from where the control action p0 must be executed to ensure the unreachability of the

failed state causing the system to reach either 1101 or 1111. On the other hand if the initial

www.manaraa.com

50

Figure 3.8 Revised model of power system of Figure 3.4

nonfaulty state is a recovery state (0001 or 0011), the recovery state 1101 or 1111 is reached

uncontrollably (through a sequence of two faults).

Consider any of the two recovery states, say 1101. If a controller disables both the repair

events at this state, then the system deadlocks and recovery to the nonfaulty part does not

occur. Similarly if one of the recovery events is not disabled, the state 1101 becomes part of a

cycle of faulty states and so a bounded-delay recovery to nonfaulty states is not guaranteed.

It follows that there does not exists a control so that the controlled system is fault-tolerant.

It turns out that there exists a control so that the controlled system is weakly fault-tolerant.

Such a controlled system is shown in Figure 3.9. The controller disables the c and c̄ transitions

between the emergency and the alert states, and also all the p̄ transitions. Due to the presence

of the cycles between the recovery states of the faulty part, the controlled system is not fault-

tolerant. However the controlled system is weakly fault-tolerant since the traces executable

from a recovery state in the faulty part (state 1001 or 1101 or 0101 or 1011 or 1111 or 0111)

are also executable from one of the recovery states of the nonfaulty part (state 0001 or 0011),

and from any faulty state a recovery state of the faulty part is reached within a bounded-delay.

www.manaraa.com

51

Figure 3.9 Supervised power system that is weakly fault-tolerant

3.8 Nonuniformly Bounded Fault-Tolerance

The notion of fault-tolerance we proposed requires the recovery to occur within a uni-

formly bounded delay. A relaxed notion of fault-tolerance is one where the delay bound for

recovery is finite but not necessarily uniformly bounded over all faulty traces. The following

definition formalizes the notions of nonuniformly-bounded fault-tolerance.

Definition 5 Given a plant G with its nonfaulty part GN , (G,GN) is said to be nonuniformly-

bounded fault-tolerant if for s ∈ L(G) − L(GN), exists m ∈ N such that for st ∈ L(G) with

|t| ≥ m or st deadlocks, exist u ∈ L(GN) and t′ ≤ t with |t′| ≤ m and st′ ∼=G u. (G,GN) is

said to be nonuniformly-bounded weakly fault-tolerant if for s ∈ L(G)− L(GN), exists m ∈ N
such that for st ∈ L(G) with |t| ≥ m or st deadlocks, exist u ∈ L(GN) and t′ ≤ t with t′ ≤ t

and st vG u.

Note in the above definition the delay bound m of fault-tolerance is a function of the

faulty trace s ∈ L(G) − L(GN). While this is more general than the uniformly-bounded case

www.manaraa.com

52

considered earlier, we show below that when G and GN are finite-automata, the two notions

are equivalent.

Theorem 7 Suppose the plant G and its nonfaulty part GN are finite automata. Then

1. (G,GN) is nonuniformly-bounded fault-tolerant if and only if (G,GN) is fault-tolerant.

2. (G,GN) is nonuniformly-bounded weakly fault-tolerant if and only if (G,GN) is weakly

fault-tolerant.

Proof: We begin by proving the first part. Without loss of generality G is assumed to be

minimal. We show that when (G,GN) is nonuniformly-bounded fault-tolerant, it holds that

X − XN ⊆ Ω(XN) (which from Theorem 9 is equivalent to (G,GN) being fault-tolerant).

Suppose for contradiction that this is not true. Then either there exists a cycle of states in

X −XN or some state in X −XN is a deadlocking state. Let s ∈ L(G) − L(GN) be a trace

that ends on such a cycle or at such a deadlocking state. In the former case (when s ends on

a cycle), for every m ∈ N exists an extension st ∈ L(G) along the cycle such that all states

visited beyond the trace s belong to X−XN . From minimality of G, exists no t′ ≤ t such that

st′ ∼=G u for some u ∈ L(GN), contradicting the fact that (G,GN) is nonuniformly-bounded

fault-tolerant. The same conclusion is obtained in the latter case (when s ends at a deadlocking

state). This completes the proof of the first part.

To prove the second part, we consider the automaton T := (Z, Σ, γ, Z0, Zm) constructed in

Remark 2 and show that if (G,GN) is nonuniformly-bounded weakly fault-tolerant, then Z ⊆
Ω(Ẑ), which as mentioned in Remark 2 is equivalent to the fact that Lm(G)\[L(G)− L(GN)]

converges to Lm(G)\L(GN). (The convergence of L(G)\[L(G)− L(GN)] to L(G)\L(GN) can

be proved similarly by setting Qm = Q in the definition of the automaton T = (Z, Σ, γ, Z0, Zm)

and establishing that Z ⊆ Ω(Ẑ).) Note together these two language convergence properties

are equivalent to (G,GN) being weakly fault-tolerant (see Theorem 4).

Suppose for contradiction that Z 6⊆ Ω(Ẑ). Then either there exists a cycle of states

belonging to Z − Ẑ or some state in Z − Ẑ is a deadlocking state. In the former case, for any

m ∈ N , exists trace t ∈ Lm(T) = Lm((Q,Σ, δ,Q−QN , Qm)) = Lm(G)\[L(G)− L(GN)] with

www.manaraa.com

53

|t| ≥ m such that no suffix of t belongs to Lm((Q,Σ, δ,QN , Qm)) = Lm(G)\L(GN). So exists

s ∈ L(G)−L(GN) such that st ∈ Lm(G) and t is arbitrarily long, yet there do not exist suffix

v of t and trace u ∈ L(GN) such that uv ∈ Lm(G). This is a contradiction to the fact that

(G,GN) is nonuniformly-bounded weakly fault-tolerant. The same conclusion can be arrived

at even in the latter case when Z− Ẑ possesses a deadlocking state. This completes the proof.

The following example shows that in general nonuniformly-bounded fault-tolerance is weaker

than the uniformly-bounded case.

Example 4 Consider a plant G and its nonfaulty part GN shown in Figure 3.10 with L(G) =

∪n≥1pr(anfbn), Lm(G) = {ε} ∪n≥1 anfbn, L(GN) = a∗, and Lm(GN) = ∅, where f represents

the faulty event. Then L(G) − L(GN) = ∪n≥1,m≤nanfbm. Pick sn = anf ∈ L(G) − L(GN).

Then Lm(G)\{sn} = {bn} ⊆ Lm(G)\[L(G)− L(GN)]. The only suffix of bn that is equivalent

to a trace in L(GN) = a∗ is the ε trace. So the delay-bound of fault-tolerance for the trace sn

is given by n (and is bounded). However this delay-bound grows unboundedly as the index n

of sn grows. We conclude that (G,GN) is nonuniformly-bounded fault-tolerant, but it is not

fault-tolerant.

Figure 3.10 (G, GN) that is only nonuniformly bounded fault-tolerant

3.9 Extension

Our framework can be modified to accommodate such a relaxation. In the initial part of

this chapter, where we required that post-recovery behavior be equivalent to some pre-fault

behavior, the condition of state-convergence will get replaced by the nonblockingness of the

www.manaraa.com

54

post-fault states with respect to the pre-fault states. In the later part of this chapter, where

we required that the post-recovery behavior be “simulated” by some pre-fault behavior, the

condition of language-convergence will get replaced by a weaker form, introduced as weak

language-stability in [Kumar, R. and Garg, V. K. and Marcus, S. I. (1993)] and as non-finite

language convergence in [Willner, Y. and Heymann, M. (1995)].

The following result characterizes the notions of nonuniformly-bounded fault-tolerance in-

troduced above.

Theorem 8 Consider a plant G = (X, Σ, δ, x0, Xm) and its nonfaulty part

GN = (XN , Σ, δN , x0, X
N
m), and suppose the corresponding minimal plant and its nonfaulty

part are Gmin = (Xmin, Σ, δmin, x0,min, Xm,min) and GN
min = (XN

min,Σ, δN
min, x0,min, XN

m,min)

respectively.

1. (G,GN) is nonuniformly-bounded fault-tolerant if and only if Xmin is nonblocking with

respect to XN
min, i.e.,

x ∈ Xmin ⇒ ∃t ∈ Σ∗ : δmin(x, t) ∈ XN
min.

2. (G,GN) is nonuniformly-bounded weakly fault-tolerant if and only if

L(G)\[L(G)− L(GN)] ⊆ Σ∗[L(G)\L(GN)],

Lm(G)\[L(G)− L(GN)] ⊆ Σ∗[(Lm(G)\L(GN)) ∪ {ε}].

Proof: We begin by proving the first part. For the necessity suppose (G, GN) is nonuniformly-

bounded fault-tolerant, and pick x ∈ Xmin. If x ∈ XN
min, we can set t = ε; else x ∈ Xmin−XN

min

and so exists s ∈ Σ∗ such that δmin(x0,min, s) = x, which implies s ∈ L(Gmin) − L(GN
min) =

L(G)−L(GN). Then exist st ∈ L(G) = L(Gmin) and u ∈ L(GN) = L(GN
min) such that st ∼=G u.

From minimality of Gmin, st and u reach the same state in Gmin. Since u ∈ L(Gmin), this

implies the state reached by u (and so also by st) belongs to XN
min. To prove the sufficiency, we

pick s ∈ L(G)−L(GN) = L(Gmin)−L(GN
min) and let x ∈ Xmin−XN

min be the state reached by

www.manaraa.com

55

s. From hypothesis, exists t ∈ Σ∗ such that δmin(x, t) ∈ XN
min. Let u ∈ L(GN

min) = L(GN) be

a trace such that δN
min(x0, u) = δmin(x, t). Then it is clear that st ∼=Gmin u, which is equivalent

to st ∼=G u.

For the necessity of the second part suppose (G,GN) is nonuniformly-bounded weakly

fault-tolerant, and pick traces t ∈ L(G)\[L(G) − L(GN)], and t′ ∈ Lm(G)\[L(G) − L(GN)].

Then since ε ∈ L(G)\L(GN), t ∈ Σ∗[L(G)\L(GN)]. Similarly since ε ∈ (Lm(G)\L(GN))∪{ε},
t′ ∈ Σ∗[(Lm(G)\L(GN)) ∪ {ε}].

Remark 3 Algorithms for verifying both nonblockingness (equivalently backward-reachability)

and weak language-stability are well-understood. It turns out that both these properties can

be polynomially verified. So by relaxing the notion of fault-tolerance to allow nonuniform delay

bound for recovery, one gains on the computational complexity of verifying the existence of a

fault-tolerant control.

3.10 Conclusion

We presented a framework for fault-tolerant supervisory control. Notations of fault-

tolerance and weakly fault-tolerance have been proposed. Given a plant along with its non-

faulty part, the goal of a fault-tolerant supervisory control is to enforce a specification for the

nonfaulty plant and another (perhaps more liberal) specification for the overall plant, and also

to ensure a bounded delay recovery up on the occurrence of a fault. Recovery implies that the

ensuing behaviors are equivalent to those starting from a nonfaulty state. In case of weak fault-

tolerance, recovery implies that the ensuing behaviors are subsumed by those starting from a

nonfaulty state. Necessary and sufficient conditions for the existence of fault-tolerant as well

as weakly fault-tolerant supervisor are provided. The condition involves the usual notions of

controllability, observability and relative-closure, together with the notion of stability. The

notion of state-stability is needed for fault-tolerance, whereas the weak fault-tolerance requires

the notion of language-stability. Algorithms to verify state-stability are presented in [Brave,

Y. and Heymann, M. (1990)], [Özveren, C. M. and Willsky, A. S. and Antsaklis, P. J. (1991)]

and are of linear complexity. Algorithms to verify language-stability are presented in [Kumar,

www.manaraa.com

56

R. and Garg, V. K. and Marcus, S. I. (1993)], [Willner, Y. and Heymann, M. (1995)]; the

complexity is polynomial in the plant language (the language which needs to converge) and

quadratic-exponential in the specification language (the language to which the convergence

occurs). We also introduced the notion of nonuniformly-bounded fault-tolerance (and its weak

version) where the delay-bound for recovery is not uniformly bounded over the set of faulty

traces, and showed that this notion is equivalent to the notion of “uniformly-bounded fault-

tolerance” considered earlier when the underlying system is one of finitely many states. Future

work will explore the synthesis of maximally-permissive fault-tolerant supervisors.

www.manaraa.com

57

CHAPTER 4. Synthesis of Optimal Fault-Tolerant Supervisor for Discrete

Event Systems

In an earlier work [Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007a)], [Wen,

Q. and Kumar, R. and Huang, J. and Liu, H. (2007b)], [Wen, Q. and Kumar, R. and

Huang, J. and Liu, H. (2008)], we introduced a framework for fault-tolerant supervisory

control of discrete event systems and presented a necessary and sufficient condition for its

existence. In this paper, we introduce the synthesis of an optimal fault-tolerant supervisory

controller. Given a discrete event plant with both faulty and nonfaulty behaviors, an optimal

fault-tolerant supervisor we synthesize enforces a set of behaviors in which (i) a recovery

is guaranteed within a bounded delay following any fault, (ii) the enforced set of nonfaulty

behaviors are maximized, and (iii) the enforced set of faulty behaviors prior to the recovery

are minimized. The computation has complexity quadratic in the size of plant. The optimal

fault-tolerant supervisor possesses another useful property: It minimizes the recovery-delay for

any faulty state. A practical example is given to illustrate the approach.

4.1 Introduction

Discrete Event Systems (DESs) are systems with discrete states that evolve in response to

events [Ramadge, P. J. and Wonham, W. M. (1987)], [Kumar, R. and Garg, V. K. (1995)]. Ex-

amples include manufacturing systems, communication protocols, reactive software, and asyn-

chronous hardware. A goal of supervisory control [Ramadge, P. J. and Wonham, W. M. (1987)],

[Kumar, R. and Garg, V. K. (1995)] of such systems is to enforce a given specification by re-

stricting the behavior of a given system (called plant). The supervisory role is characterized by

www.manaraa.com

58

the fact that at any given plant state, the supervisor determines a set of controllable events to

be enabled, so that the plant evolves over enabled events (including the uncontrollable events)

without violating a given specification.

In an earlier work [Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007a)], [Wen,

Q. and Kumar, R. and Huang, J. and Liu, H. (2007b)], [Wen, Q. and Kumar, R. and Huang,

J. and Liu, H. (2008)], we introduced a framework for fault-tolerant supervisory control of

discrete event systems and presented a necessary and sufficient condition for its existence.

Fault-tolerance is a property requiring that a system continues to function, possibly with a

degraded performance, even when some of its components fail. Given a plant G, possessing

both faulty and nonfaulty behaviors, and a submodel GN for the nonfaulty part, the goal of

fault-tolerant control is to enforce a certain specification KN for the nonfaulty plant GN and

another (perhaps more liberal) specification K ⊇ KN for the overall plant G, and further to

ensure that the plant recovers from any fault within a bounded delay, so that following the

recovery the system state is equivalent to a nonfaulty state (as if no fault ever happened). A

fault is modeled as an uncontrollable event, occurrence of which may cause a transition from the

nonfaulty part to the faulty part. Either of the specifications KN and K can be used to specify

both the safety and the progress requirements. Since a degraded performance may be tolerable

after the occurrence of a fault, the second specification is more liberal than the first one (and

so it allows a larger set of traces). The condition for the existence of a fault-tolerant controller

involves the usual notions of controllability, observability and relative-closure, together with

the notion of stability [Brave, Y. and Heymann, M. (1990)], [Özveren, C. M. and Willsky,

A. S. and Antsaklis, P. J. (1991)], which is used to establish bounded delay recovery from a

fault.

Fault-tolerance is a property requiring that a system continues to function, perhaps with a

degraded performance, even when some of its components fail. In applications, fault-tolerance

is achieved by using redundancy. Following the occurrences of failures, a fault-tolerant system

can continue its proper operation, although the operation may be degraded. Fault-tolerance

requires the ability of recovering from faulty behaviors. That is, the system should resume

www.manaraa.com

59

normal functionality, fully or partially, in finite time. The notion of fault-tolerance is a type of

state-stability [Brave, Y. and Heymann, M. (1990)], [Özveren, C. M. and Willsky, A. S. and

Antsaklis, P. J. (1991)] property. If a system is not originally fault-tolerant, it could be made

so using appropriate control. The purpose of fault-tolerant control is to have the controlled

system achieve fault-tolerance.

There has been some prior work on fault-tolerant control of DESs (see for example [Jensen,

R. M. (2003)]). Some involved controller switching upon the occurrence of a fault as in

[Darabi, H. and Jafari, M. A. and Buczak, A. L. (2003)], or re-computation of a controller

as in [Rohloff, K. R. (2005)]. The resulting controlled system can tolerate some faults but

the system performance after faults will remain degraded since the notion of recovery from

faults was not incorporated. Case studies involving synthesis of fault-tolerant supervisors can

also be found in [Cho, K. -H. and Lim, J. -T. (1996)], [Cho, K. -H. and Lim, J. -T. (1998)],

[Zhou, M. C. and Dicesare, F. (1989)]. Design of certain coordination protocols for automated

highway systems to achieve fault-tolerance under vehicle failures is reported in [Lygeros, J.

and Godbole, D. N. and Broucke, M. (2000)], [Godbole, D. N. and Lygeros, J. and Singh,

E. and Deshpande, A. and Lindsey, A. E. (2000)]. Takai et al. considered the problem of

reliable decentralized supervisory control [Takai, S. and Ushio, T. (2000)], where they studied

fault-tolerance with respect to the failures of the supervisors. Fault-tolerance in Petri Net is

considered in [Iordache, M. V. and Antsaklis, P. J. (2004)], where liveness enforcing strategies

are designed to deal with failures using system reconfigurations. In [Lafortune, S. and Lin,

F. (1991)], authors considered a pair of specifications, representing the desired and the (more

liberal) tolerable behavior for a plant.

In this chapter we study the synthesis of an optimal fault-tolerant supervisory controller

when the required existence conditions (as reported in [Wen, Q. and Kumar, R. and Huang,

J. and Liu, H. (2007a)], [Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007b)],

[Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2008)]) are not satisfied. An optimal

fault-tolerant supervisor we synthesize enforces a set of behaviors in which (i) a recovery

is guaranteed within a bounded delay following any fault, (ii) the enforced set of nonfaulty

www.manaraa.com

60

behaviors are maximized, and (iii) the enforced set of faulty behaviors prior to the recovery are

minimized. Given (G,GN), where G is a plant and GN is its nonfaulty part, and a state-based

specification (Xg, Xg
m) representing legal states and legal final states respectively, we compute

a subplant (G̃, G̃N) such that (i) G̃N (v GN) is a maximal controllable subplant of GN for

which there exists G′ with G̃N v G′ v G and (G′, G̃N) is fault-tolerant, (ii) G̃ is a minimal

such G′, and (iii) safety and nonblockingness properties are satisfied. The above is guided by

the goal to maximize the achievable nonfaulty behaviors and at the same time minimize the

faulty behaviors that must be tolerated, without having to sacrifice safety, nonblockingness,

and recovery.

We show that G̃N can be uniquely chosen (since the corresponding property is closed

under union), whereas nonunique minimal choices exist for G̃ (the corresponding property is

closed under the intersection over decreasing chains). We present an algorithm, of complexity

quadratic in the size of G, for computing (G̃, G̃N) and illustrate the algorithm through an

example. It utilizes another new algorithm presented in the chapter for computing a minimal

subplant in which the attraction of one set of states is guaranteed to another set of states.

The remainder of this paper is organized as following. Section 4.2 gives the basic notation

and preliminaries. Section 4.3 formulates the synthesis of an optimal fault-tolerant supervisor.

Section 4.4 provides an algorithm for the computation of such a supervisor and an illustra-

tive example. Section 4.5 proves the optimality of the recovery delay in the controlled plant

computed by the algorithm of Section 4.4. Section 4.6 gives a practical application example.

Section 4.7 concludes the paper. The paper is based on a prior conference version [Wen, Q.

and Kumar, R. and Huang, J. (2008)], extended to include new results and new application.

4.2 Preliminaries and Notations

A DES to be controlled, called plant, is modeled as an automaton, denoted by a five

tuple G := (X, Σ, α, x0, Xm), where X denotes the set of states, Σ denotes the finite set of

events, α : X × Σ → X denotes the partial deterministic state transition function, x0 ∈ X

www.manaraa.com

61

denotes the initial state, and Xm ⊆ X denotes the set of marked states. For x ∈ X, we use

Σ(x) ⊆ Σ to denote the set of events defined at x, i.e., Σ(x) := {σ ∈ Σ | α(x, σ) is defined}.
For x ∈ X, σ ∈ Σ(x), (x, σ, α(x, σ)) is called a transition of G.

Σ∗ is used to denote the set of all finite-length sequences of events, called traces, which

includes the zero-length trace ε. The length of a trace s, denoted as |s|, is defined to be the

number of events in the trace. A subset of Σ∗ is called a language. The generated language

of G, denoted as L(G) ⊆ Σ∗, contains all traces s for which α(x0, s) is defined. The marked

language of G, denoted as Lm(G), contains all generated traces that reach a marked state.

Given two automata G1 := (X1, Σ, α1, x01 , Xm1) and G2 := (X2,Σ, α2, x02 , Xm2), G1 is said

to be a subautomaton of G2, denoted as G1 v G2, if there exists an injective map h : X1 → X2

such that ∀s ∈ L(G1) : h(α1(x01 , s)) = α2(x02 , s). Given a plant G = (X,σ.α, x0.Xm), a subset

of states X̂, and a subset of transitions ∆, the subplant of G restricted to (X̂, ∆), is given by,

G |
(X̂,∆)

:= (X̂,Σ, α|
X̂,∆

, x0, Xm ∩ X̂), where for x ∈ X̂, σ ∈ Σ,

α |
(X̂,∆)

(x, σ) :=





α(x, σ) if α(x, σ) ∈ X̂, (x, σ, α(x, σ)) ∈ ∆

undefined otherwise

It is possible that ∆ is not specified, in which case G |
X̂

is same as G |
(X̂,X×Σ×X)

.

For traces s and t, we use s ≤ t to denote that s is a prefix of t and s < t to denote that s

is a proper prefix of t. For a language K ⊆ Σ∗, pr(K), called the prefix-closure of K, denotes

the set of all prefixes of traces in K, i.e., pr(K) = {s ∈ Σ∗ | ∃t ∈ K : s ≤ t}. It is clear

that K ⊆ pr(K), and K is said to be prefix-closed if K = pr(K). A language K is said to be

relative-closed with respect to G, if pr(K) ∩ Lm(G) = K ∩ Lm(G).

We use K\s to denote the set of traces that occur in the language K after the trace s has

occurred, i.e., L\s := {t ∈ Σ∗ | st ∈ L}. For traces s and t, we use s vG t to denote that the

sets of traces that occur in the generated and the marked languages of G after s are contained

in those after t, i.e., L(G)\s ⊆ L(G)\t and Lm(G)\s ⊆ Lm(G)\t. We write s ∼=G t if s vG t

and t vG s. s ∼=G t implies the equivalence of the behaviors following s and t, whereas s vG t

implies the behaviors following s are subsumed by the behaviors following t.

www.manaraa.com

62

Definition 6 [Brave, Y. and Heymann, M. (1990)] Given a plant G = (X, Σ, α, x0, Xm)

and a state set X̂ ⊆ X, x ∈ X is said to be X̂ − attractable in G if there exists m ∈ N such

that for all t for which α(x, t) is defined and either |t| ≥ m or t deadlocks, exists t′ ≤ t with

|t′| ≤ m such that α(x, t′) ∈ X̂. m is called the delay bound of convergence. x ∈ X is said to be

controllably X̂ − attractable in G if there exists a supervisor S such that x is X̂ − attractable

in G‖S.

We use ΩG(X̂), called the region of attraction of X̂, to denote the set of all X̂-attractable

states, and X̂ is called an attractor for the set ΩG(X̂). We use Ωc
G(X̂), called the region of

controllable-attraction of X̂, to denote the set of all controllably X̂-attractable states, and X̂

is called a controlled-attractor for the set Ωc
G(X̂). A state set X̃ ⊆ X is said to be attractable

to X̂ if X̃ ⊆ ΩG(X̂) and controllably-attractable to X̂ if X̃ ⊆ Ωc
G(X̂). Clearly, X̂ ⊆ ΩG(X̂) ⊆

Ωc
G(X̂).

For control purposes, the event set of G is partitioned into the set of controllable events

Σc ⊆ Σ and the set of uncontrollable events Σu ⊆ Σ. A language K is said to be controllable

(with respect to G and Σu) if pr(K)Σu ∩ L(G) ⊆ pr(K).

A supervisor is another automaton S := (Y, Σ, β, y0, Ym). The supervised plant is the syn-

chronous composition of G and S, denoted G||S := (X × Y,Σ, γ, (x0, y0), Xm × Ym), where

for (x, y) ∈ X × Y and σ ∈ Σ, γ((x, y), σ) is defined if and only if both α(x, σ) and β(y, σ)

are defined and in which case, γ((x, y), σ) = (α(x, σ), β(y, σ)). It can be concluded that the

generated and the marked languages of the supervised plant satisfy: L(G||S) = L(G) ∩ L(S)

and Lm(G||S) = Lm(G) ∩ Lm(S), respectively. A supervisor S is said to be (i) nonmark-

ing if Lm(G||S) = L(G||S) ∩ Lm(G), (ii) nonblocking if pr(Lm(G||S)) = L(G||S), and (iii)

Σu-compatible if it does not disable any uncontrollable event (equivalently if L(G||S) is con-

trollable). It is known that given a nonempty specification language K ⊆ Lm(G), there exists

a Σu-compatible, nonmarking and nonblocking supervisor if and only if K is relative-closed

and controllable [Ramadge, P. J. and Wonham, W. M. (1987)], [Kumar, R. and Garg,

V. K. (1995)].

The following notion of fault-tolerance was introduced in [Wen, Q. and Kumar, R. and

www.manaraa.com

63

Huang, J. and Liu, H. (2007a)], [Wen, Q. and Kumar, R. and Huang, J. and Liu,

H. (2007b)], [Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2008)].

Definition 7 Consider a pair of languages (H, HN) with HN ⊆ H. The pair (H,HN) is said

to be fault-tolerant if exists m ∈ N such that for s ∈ pr(H)−pr(HN), st ∈ pr(H) with |t| ≥ m

or st deadlocks, there exist u ∈ pr(HN) and t′ ≤ t with |t′| ≤ m and st′ ∼=G u. In this case,

m is called the delay-bound of fault-tolerance. Given a plant G with its nonfaulty part GN ,

(G,GN) is said to be fault-tolerant if (L(G), L(GN)) is fault-tolerant. A supervisor S is said

to be fault-tolerant if (G‖S, GN‖S) is fault-tolerant.

The following theorems were obtained in [Wen, Q. and Kumar, R. and Huang, J. and

Liu, H. (2007a)], [Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007b)], [Wen, Q.

and Kumar, R. and Huang, J. and Liu, H. (2008)].

Theorem 9 ([Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007a)], [Wen, Q.

and Kumar, R. and Huang, J. and Liu, H. (2007b)], [Wen, Q. and Kumar, R. and

Huang, J. and Liu, H. (2008)]) Consider a plant G = (X,Σ, δ, x0, Xm) and its nonfaulty part

GN = (XN , Σ, δN , x0, X
N
m), and suppose the corresponding minimal plant and its nonfaulty

part are Gmin = (Xmin, Σ, δmin, x0,min, Xm,min) and GN
min = (XN

min,Σ, δN
min, x0,min, XN

m,min)

respectively. (G,GN) is fault-tolerant if and only if Xmin is attractable to XN
min, i.e., Xmin ⊆

ΩGmin(XN
min).

Theorem 10 ([Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007a)], [Wen,

Q. and Kumar, R. and Huang, J. and Liu, H. (2007b)], [Wen, Q. and Kumar, R. and

Huang, J. and Liu, H. (2008)]) Given a plant G = (X,Σ, α, x0, Xm) with nonfaulty part

GN = (XN , Σ, αN , x0, X
N
m), specification ∅ 6= K ⊆ Lm(G) for G and specification ∅ 6= KN ⊆

Lm(GN) for GN satisfying KN ⊆ K, there exists a nonmarking, nonblocking (with respect to

both GN and G), Σu-compatible and fault-tolerant supervisor S such that

1. Lm(GN ||S) = KN , L(GN ||S) = pr(Lm(GN ||S)), and

2. Lm(G||S) = K and L(G||S) = pr(Lm(G||S))

www.manaraa.com

64

if and only if

1. K is relative-closed and controllable with respect to G,

2. (K,KN) is fault-tolerant, and

3. KN = K ∩ Lm(GN) and pr(KN) = pr(K) ∩ L(GN).

4.3 Formulation of Optimal Fault-Tolerant Control Synthesis Problem

Theorem 10 provides a condition under which a desired fault-tolerant supervisor exists.

When this condition is satisfied, a trim recognizer of K can be chosen as a supervisor. Here we

study the problem of synthesizing a fault-tolerant supervisor when the condition of Theorem 10

is not satisfied. A desirable goal is to maximize the achievable nonfaulty behaviors and at the

same time minimize the faulty behaviors that must be tolerated, without sacrificing safety,

nonblockingness and recovery. The motivation being, we allow maximal functionality of the

system in the absence of faults, and at the same time limit the system’s faulty behavior within

a minimal range without sacrificing recovery.

It turns out that the supremal nonfaulty fault-tolerant behavior does not exist in general.

That is, given a language pair (K, KN), we cannot always find a fault-tolerant sublanguage

pair (K̃, K̃N), where K̃ ⊆ K and K̃N ⊆ KN , such that any other fault-tolerant sublanguage

pair (K̂, K̂N) satisfies K̂ ⊆ K̃ and K̂N ⊆ K̃N .

Consider the following example for illustration. Figure 4.1 shows a plant G and its nonfaulty

part GN , where f is a faulty event and is the only uncontrollable event. From Figure 4.2, we

can see that there are two subplant pairs (G1, G
N
1) and (G2, G

N
2), which are fault-tolerant.

Note in (G1, G
N
1) the faulty state 6 is equivalent to the nonfaulty state 3, whereas in (G2, G

N
2)

the faulty state 6 is equivalent to the nonfaulty state 2. Thus in both cases the system

reaches a state that is equivalent to a nonfaulty state within one transition of the occurrence

of the fault (i.e., the delay bound for recovery is one in both cases). However the language

(L(G1) ∪ L(G2), L(GN
1) ∪ L(GN

2)) which is realized by (G,GN) shown in Figure 4.1 is not

www.manaraa.com

65

fault-tolerant. This is because there exists no nonfaulty state that is equivalent to the faulty

state 6 where the system can stay with recovery.

Figure 4.1 Plant G with its nonfaulty part GN

Figure 4.2 Two fault-tolerant subplants

It happens that maximal nonfaulty behaviors that are fault-tolerant also do not exist, for

the limit of a class of monotonically increasing nonfaulty fault-tolerant behaviors may not be

fault-tolerant. To see this, consider the monotonically increasing sequence of plant behaviors

shown in Figure 4.3, where the nth behavior in the sequence is generated by the plant (Gn, GN
n).

The nonfaulty part GN
n contains n a’s, whereas the overall plant Gn contains a faulty trace

with same number of b’s, i.e., the delay bound for recovery in (Gn, GN
n) is n. The limiting plant

behavior (L(G∞) := ∪nL(Gn), L(GN∞) := ∪nL(GN
n)) (see Figure 4.4) is not fault-tolerant since

the faulty plant can execute an unbounded number of b’s before a recovery to the nonfaulty

part occurs.

The examples above show that neither the supremal nor a maximal nonfaulty fault-tolerant

sublanguage exists in general. Lack of supremal and even maximal nonfaulty fault-tolerant

sublanguages motivate us to restrict our attention to state-feedback based control, under which

www.manaraa.com

66

Figure 4.3 Plant (Gn, GN
n), n ≥ 1

Figure 4.4 Plant (G∞, GN∞)

www.manaraa.com

67

the controlled plant is always a subplant of the uncontrolled plant. In this setting, we are able

to show the existence of fault-tolerant control that maximizes the nonfaulty behavior while

minimizing the faulty behavior without sacrificing safety, nonblockingness, and recovery.

Without loss of generality, the specification is given as a state set pair (Xg, Xg
m), where

Xg ⊆ X is the set of legal states and Xg
m ⊆ Xg∩Xm is the set of legal final states. Since under

a state-feedback control the controlled plant is a subplant of the uncontrolled plant, examining

various state-feedback controllers is equivalent to examining various subplants of a given plant.

We first define the set of all fault-tolerant subplants, denoted F (G,GN) as follows:

Definition 8 Given a plant model (G,GN) with GN v G, the class of fault-tolerant subplants,

denoted F (G,GN), is the set of all subplants (G̃ v G, G̃N v GN) with state set pair (X̃, X̃N)

and marked state set pair (X̃m, X̃N
m), such that

• X̃ ⊆ Xg, X̃m ⊆ Xg
m;

• Lm(G̃) is relatively closed and controllable with respect to G;

• X̃ ⊆ ΩG̃(X̃N).

Remark 4 Since G̃N represents the nonfaulty subplant and G̃ represents the overall subplant,

our goal is to maximize G̃N (which will maximize nonfaulty behavior), and at the same time

minimize G̃ (which will minimize the fault behavior). In doing so, we want to ensure that

(G̃, G̃N) ∈ F (G,GN).

We next introduce the class of fault-tolerant nonfaulty subplants and show that this class

is closed under union.

Definition 9 The class of fault-tolerant nonfaulty subplants is defined as:

FN
G (GN) := {G̃N v GN | ∃G̃ v G : (G̃, G̃N) ∈ F (G,GN)}.

The following theorem shows that the above class of fault-tolerant nonfaulty subplants is

closed under union.

www.manaraa.com

68

Theorem 11 Let Λ be an index set such that ∀λ ∈ Λ, GN
λ ∈ FN

G (GN). Then
⋃

λ∈Λ GN
λ ∈

FN
G (GN).

Proof: We show the existence of G′ v ∪λGλ such that (G′,∪λGN
λ) ∈ F (G,GN).

Suppose (∪λGλ,∪λGN
λ) is fault-tolerant. Then we claim that we can choose G′ = ∪λGλ.

Since for each λ, Xλ ⊆ Xg, we have ∪λXλ ⊆ Xg. Since for each λ, Lm(Gλ) is controllable

which means no uncontrollable event is disabled in G to obtain each Gλ, it is the case that

no uncontrollable event is disabled to obtain ∪λGλ, i.e., Lm(∪λGλ) is controllable. Since for

each λ, Lm(Gλ) is relatively-closed which implies that Xλ ∩Xm ⊆ Xλ ∩Xg
m, it is the case that

∪λXλ ∩Xm ⊆ ∪λXλ ∩Xg
m, i.e., Lm(∪λGλ) is relatively-closed.

On the other hand suppose (∪λGλ,∪λGN
λ) is not fault-tolerant. Then exists a cycle in

the faulty part. Since for each λ, (Gλ, GN
λ) is fault-tolerant which implies the faulty part

of Gλ does not contain any cycle, i.e., a certain edge of each faulty-part cycle of ∪λGλ is

missing in Gλ. Then each such edge must be labeled with a controllable event (since Lm(Gλ)

is controllable). Let G′ be obtained from by removing each edge that contributes to a cycle in

the faulty-part of ∪λGλ and is missing in Gλ̄ for a λ̄ ∈ Λ. Then the faulty-part of G′ is acyclic.

Also since only controllable edges are removed to obtain G′ from ∪λGλ, the controllability

property is preserved. Since Lm(∪λGλ) is controllable (see above), we can claim that Lm(G′)

is controllable. Further since G′ is obtained from ∪λGλ by removing certain edges that appear

as part of certain cycles, the state set is preserved upon the removal of such edges (i.e., X ′ =

∪λXλ). It can then be concluded that relative-closure property is also preserved, and so Lm(G′)

is also relatively-closed.

It remains to show that (G′,∪λGN
λ) is fault-tolerant. Since the faulty-part of G′ is acyclic,

it suffices to show that for any faulty state x ∈ X ′ = ∪λXλ exists a path in G′ to the nonfaulty

part ∪λXN
λ . Pick any such state x. Then exists λ such that x is a faulty state of Gλ. From

the fault-tolerance of (Gλ, GN
λ), exists a path in Gλ from x to GN

λ v ∪λGN
λ . If this path does

not contain any of the edges that were removed to obtain G′, then we are done. Otherwise this

path visits a state x̄ from where an edge that is present in ∪λGλ but is missing in Gλ̄ has been

removed. From the fault-tolerance of (Gλ̄, GN
λ̄

) exists a path in Gλ̄ v G′ from x̄ to GN
λ̄
v G′.

www.manaraa.com

69

This concludes the proof.

Since FN
G (GN) is closed under union, it possesses a supremal element, supFN

G (GN) ∈
FN

G (GN), with the property that if G̃N ∈ FN
G (GN), then G̃N v supFN

G (GN).

In the above, we defined a class of fault-tolerant nonfaulty subplants. Next, given a non-

faulty subplant, we define a class of overall subplant that is fault-tolerant.

Definition 10 Given G̃N v GN , the class of overall subplants that are fault-tolerant wrt G̃N

is defined as:

FG̃N (G) := {G̃ v G|(G̃, G̃N) ∈ F (G,GN)}.

G̃ is an infimal element of FG̃N (G) if G̃ ∈ FG̃N (G), and G′ ∈ FG̃N (G) implies G̃ v G′. G̃ is

a minimal element of FG̃N (G) if G̃ ∈ FG̃N (G) and G′ v G̃ implies G′ 6∈ FG̃N (G).

The following result establishes certain closure properties of FG̃N (G) under intersection.

Theorem 12 FG̃N (G) does not possess infimal element but possess minimal elements when-

ever it is nonempty.

Proof: For the first part, we show that FG̃N (G) is not closed under intersection. As seen

from Figure 4.5, G1, G2 ∈ FGN (G1 ∪G2) (since for each i = 1, 2, (Gi, G
N) ∈ F (G1 ∪G2, G

N)).

However it is clear from Figure 4.5 that (G1 ∩ G2, G
N) 6∈ F (G1 ∪ G2, G

N), i.e., G1 ∩ G2 6∈
FGN (G1 ∪G2).

Figure 4.5 (G1, G̃
N) and (G2, G̃

N) are fault-tolerant, but (G1 ∩G2, G̃
N) is

not

Next we consider the second part. Since G has finite number of states and transitions, the

number of subplants of G is finite. So, whenever FG̃N (G) is nonempty, there exist at least one

subplant of G in FG̃N (G) for which there exists no subplant in the set FG̃N (G), and so the

existence of a minimal overall subplant that is fault-tolerant with respect to G̃N follows.

www.manaraa.com

70

The set of all the minimal elements of FG̃N (G) is denoted as MINFG̃N (G), and a minimal

element is denoted as minFG̃N (G).

4.4 Computation of Optimal Fault-Tolerant Control

We set out the goal of synthesizing an optimal fault-tolerant control that maximizes the

achievable nonfaulty behavior, minimizes the achievable faulty behavior and ensures safety,

nonblockingness and bounded-delay recovery. The computation of such a fault-tolerant state-

feedback control for a given plant (G,GN) with state set (X, XN) and specification (Xg, Xg
m),

where Xg ⊆ X, Xg
m ⊆ Xg ∩ Xm, requires the computation of a subplant pair (G̃, G̃N) with

state set (X̃, X̃N), where G̃N = supFN
G (GN), and G̃ ∈ MINFG̃N (G).

The computation of an optimal fault-tolerant control discussed above requires the com-

putation of the region of controllable-attraction and a minimal set of transition for achieving

the controllable-attractability. The following algorithm computes the region of controllable-

attraction Ωc
G(X̂) of states in X̂ ⊆ X for a plant G, and is obtained by extending the one

given in [Kumar, R. and Garg, V. K. and Marcus, S. I. (1993)] to keep track of a minimal set

of transitions that must be enabled to achieve the controllable-attractability. Also, whenever

α(X̂, Σ∗u) ⊆ Ωc
G(X̂), the algorithm computes a minimal fault-tolerant subplant ΥG(X̂) with

the nonfaulty states X̂.

Algorithm 1 Consider a plant G = (X, Σ, α, x0, Xm) and a state set X̂ ⊆ X.

1. Initialization step:

k = 0, Ω−1 = ∅, Ω0 = X̂, ∆0 = ∅.

2. Iteration step:

• Ωk+1 = Ωk ∪ {x ∈ X − Ωk|α(x,Σ) ∩ Ωk − Ωk−1 6= ∅, α(x,Σu) ⊆ Ωk}.

• ∆k+1 = ∆k ∪ {(x, σ, x′) | α(x, σ) = x′, x ∈ Ωk+1 − Ωk, σ ∈ Σu ∪ Σx, x′ ∈ Ωk}, where

Σx = ∅ if α(x,Σu) 6= ∅ and otherwise Σx = {σx} such that α(x, σx) ∈ Ωk.

www.manaraa.com

71

3. Termination step:

If Ωk+1 6= Ωk, then increment k by 1 and iterate; else Ωc
G(X̂) := Ωk, ∆G(X̂) := ∆k, and

ΥG(X̂) := G|X̄,∆̄, where X̄ := {x ∈ X̄|∃x1 ∈ α(X̂, Σ∗u), {(xi, σi, xi+1) ∈ ∆G(X̂)}n
i=1 :

xn+1 = x}, ∆̄ := {(x, σ, x′) ∈ ∆G(X̂) | x ∈ X̄}.

Remark 5 The complexity of Algorithm 1 can be seen to be linear in the size of plant G.

This is because at most |X| iterations are being performed, and in each iteration a constant

amount of computation is being done.

Algorithm 1 computes the region of controllable-attraction of X̂, by iteratively adding

controllably attractable states with increasing delay bound of convergence, and also keeps a

record of a minimal set of transitions that must remain enabled at the states included in the

region of controllable attraction. Note a (single) controllable transition is included (this is the

transition used for recovery) only when no uncontrollable transitions are defined at that state.

This ensures the minimality of the enabled transitions.

A desired minimal subplant is obtained by including only the minimally required states of

the region of controllable attraction, and only the transitions originating at those states that

belong to the minimal set of transitions required for controllable attraction. The minimality of

the states included follows from the fact that only those faulty states that are reachable from a

nonfaulty state by executing a sequence of uncontrollable transitions, followed by a sequence of

transitions belonging to the minimal set of transitions required for controllable attraction, are

included in the minimal subplant. It then follows that the computed subplant is minimal. This

is stated in the following theorem, the proof of which follows from the preceding discussion.

Theorem 13 Given a plant G = (X, Σ, α, x0, Xm) and state sets X̃, X̂ ⊆ X such that X̃ ⊆
Ωc

G(X̂), ΥG(X̂) computed by Algorithm 1 is a minimal fault-tolerant subplant with nonfaulty

part X̂.

The following algorithm computes a fault-tolerant subplant (G̃N , G̃) such that G̃N =

supFN
G (GN) and G̃ ∈ MINFG̃N (G).

www.manaraa.com

72

Algorithm 2 Consider plant G = (X, Σ, α, x0, Xm) with nonfaulty part GN = (XN , Σ, αN , x0, X
N
m),

and specification (Xg, Xg
m).

Uncontrollable/blocking states removal:

1. Initialization step:

k = 0, Xg
k := Xg.

2. Iteration step:

If x0 6∈ Xg
k , then terminate (no solution exists); else

• Xg
k+1 := {x ∈ Xg

k | α(x,Σ∗u) ⊆ Xg
k , α|Xg

k
(x,Σ∗) ∩Xg

m 6= ∅}.

3. Termination step: If Xg
k+1 6= Xg

k , increment k by 1 and iterate; else

G|Xg
k

=: Ḡ = (X̄, Σ, ᾱ, x0, X̄m), and GN |Xg
k

=: ḠN = (X̄N , Σ, ᾱN , x0, X̄
N
m).

Optimal fault-tolerant subplant computation:

1. Initialization step:

k = 0, XN
k := X̄N .

2. Iteration step:

If x0 6∈ XN
k , then terminate (no solution exists); else

• XN
k+1 := {x ∈ XN

k | ᾱ(x,Σ∗u) ⊆ Ωc
Ḡ
(XN

k), ᾱ|Ωc
Ḡ

(XN
k

)(x,Σ∗) ∩ (XN
k ∩Xg

m) 6= ∅}.

3. Termination step:

If XN
k+1 6= XN

k , increment k by 1 and iterate; else

• X̃N = XN
k , G̃N := ḠN |X̃N ;

• G̃ := ΥḠ(X̃N).

The steps of Algorithm 2 can be understood as follows. The “uncontrollable/blocking

states removal” step computes the subplant that recognizes the supremal relative-closed and

controllable sublanguage by keeping only those legal states X̄ ⊆ Xg that are controllable

(invariant under the executions of uncontrollable transitions) and nonblocking (can reach a

legal final state in Xg
m while staying inside X̄). This provides a supremal safe and nonblocking

www.manaraa.com

73

subplant (Ḡ, ḠN). Additional states in X̄N may need to be removed to satisfy fault-tolerance

since the faulty states in the uncontrollable reach of X̄N may not be controllably-attractable to

X̄N . This is accomplished in the “optimal fault-tolerant subplant computation” step. Starting

from the initial iteration in which k = 0 and XN
k = X̄N , the kth iteration obtains a subset

XN
k+1 by retaining only those states in XN

k whose uncontrollable reach is within the region of

controllable-attraction of XN
k and that are nonblocking with respect to the marked states in

XN
k ∩Xg

m while staying inside the region of controllable-attraction of XN
k . This maximizes the

set of nonfaulty behaviors. To minimize the faulty behavior, we should only keep those states

in Xk as part of Xk+1 that are uncontrollably reachable from the nonfaulty part, i.e., the states

in αk(XN
k+1, Σ

∗
u). However not all such states may be controllably-attractable to XN

k+1. Xk+1

is hence chosen to be a minimal controlled-attractor for those states of αk(XN
k+1, Σ

∗
u) that

are controllably-attractable to XN
k+1. The iteration continues if XN

k+1 6= XN
k and otherwise

it terminates yielding the nonfaulty states X̃N of a desired optimal fault-tolerant subplant.

Further from Algorithm 1, the plant G̃ := ΥḠ(X̃N) is the minimal fault-tolerant subplant of

Ḡ with nonfaulty states X̃N .

Remark 6 It can be verified that the number of iterations of the steps “uncontrollable/blocking

states removal” as well as “optimal fault-tolerant subplant computation” is bounded by the

number of states in G, and each such iteration has a complexity that is linear in the size of

plant G. It follows that the complexity of Algorithm 2 is quadratic in the size of plant G.

The following theorem establishes the correctness of Algorithm 2.

Theorem 14 Given overall plant G, nonfaulty plant GN and specification (Xg, Xg
m), Algo-

rithm 2 computes (G̃N , G̃) with G̃N = supFN
G (GN) and G̃ ∈ MINFG̃N (G).

Proof: We first prove that G̃N is the supremal element of FN
G (GN). First note that the

“uncontrollable/nonblocking removal step” computes the supremal subplant (Ḡ, ḠN) that is

safe (does not reach an illegal state), controllable (is invariant with respect to the execution of

feasible uncontrollable transitions), and nonblocking (a legal final state can always be reached

within Ḡ). Thus if (Ḡ, ḠN) also happens to be fault-tolerant, then ḠN will be the supremal

www.manaraa.com

74

element of FN
G (GN), and otherwise the supremal element of FN

G (GN) must be a subplant of

ḠN . The “optimal fault-tolerant subplant computation” step iteratively computes the state set

of such a subplant. The iteration starts with X̄N of ḠN and iteratively removes states to obtain

X̃N . It is clear from the “optimal fault-tolerant computation” step that the uncontrollable

reach of X̃N is controllably-attractable to X̃N and so for G̃N exists G′ = Ḡ|Ωc
Ḡ

(X̃N) such

that (G′, G̃N) is fault-tolerant. Further since illegal states are not reached in Ḡ, they are

also not reached in G′. Next since the uncontrollable transitions of X̃N reach states that

are controllably-attractable to X̃N , we can conclude that G′ is invariant with respect to the

execution of feasible uncontrollable transitions, i.e., it is controllable. Also since the states in

X̃N can always reach the states in X̃N ∩Xg
m without having to leave the states of G′, X̃N is

nonblocking with respect to X̃N ∩Xg
m. Then owing to the fault-tolerance property the states

of G′ are also nonblocking with respect to X̃N ∩ Xg
m. Thus (G′, G̃N) is safe, controllable,

nonblocking, and fault-tolerant. The supremality of X̃N follows from the fact that any state

in X̄N − X̃N that gets removed in the “optimal fault-tolerant subplant computation” violates

either the fault-tolerance or the nonblocking property, and so cannot be present in the supremal

solution.

Next since G′ is a subplant of Ḡ, ΥG′(X̃N) = ΥḠ(X̃N). It follows that, G̃ = ΥG′(X̃N) =

ΥḠ(X̃N) is the minimal subplant of G′ with the nonfaulty states X̃N . It follows that G̃ ∈
MINFG̃N (G).

Example 5 The following example illustrates the Algorithm 2. Consider the plant (G,GN)

given in Figure 4.6. Encircled states denote the final states. There is a single illegal state labeled

dump; the remaining states form the state set Xg. The specification for the marked states is

given as Xg
m = Xg ∩Xm = Xm. The dotted double arrowed transitions are uncontrollable and

the remaining ones are controllable. All transitions from a state in XN to a state in X are

considered faulty (and also uncontrollable). Note each transition has a distinct event label and

so it can be identified by the event labeling the transition.

The subplant (G0, G
N
0) obtained after the removal of uncontrollable and blocking states is

shown in Figure 4.7. Note the states 4 and 8 get removed since they can reach the illegal state

www.manaraa.com

75

Figure 4.6 Plant (G,GN)

uncontrollably. Also note that XN
0 = {1, 2, 3}, and X0 = {1, 2, 3, 5, 6, 7, 9, 10, 11}.

Figure 4.7 Controllable and nonblocking subplant (G0, G
N
0)

Since x0 = {2} ∈ X0, the computation of the fault-tolerant subplant proceeds as follows.

1. Iteration no. 1:

• XN
1 = {1, 2, 3};

• Ωc
G0

(XN
1) = {1, 2, 3, 6, 7, 10, 11},

∆G0(X
N
1) = {c8, c12, c14, u7};

• X1 = {1, 2, 3, 6, 7, 10, 11}. The resulting (G1, G
N
1) is shown in Figure 4.8.

www.manaraa.com

76

Figure 4.8 (G1, G
N
1) obtained after iteration no. 1

2. Iteration no. 2:

• XN
2 = {2, 3};

• Ωc
G1

(XN
2) = {2, 3, 6, 7, 10, 11},

∆G1(X
N
2) = {c8, c12, c14, u7};

• X2 = {2, 3, 6, 7, 10, 11}. The resulting (G2, G
N
2) is shown in Figure 4.9.

Figure 4.9 (G2, G
N
2) obtained after iteration no. 2

3. Iteration no. 3:

• XN
3 = {2, 3}. Since X3 = X2, the iteration stops.

www.manaraa.com

77

After removing the controllable transitions {c2, c9} that leave the state set X2 and also

all controllable transitions in the faulty part of G2 that are not included in ∆G2(X
N
3) =

{c8, c12, c14, u7}, we get the desired fault-tolerant subplant shown in Figure 4.10.

Figure 4.10 Optimal fault-tolerant subplant

We can see that state 2 and 3 are the only nonfaulty states from where after the occurrence

of a fault it is possible to recover within a bounded delay. State 1 does not have this property

since it is possible to uncontrollably reach state 5 from where a bounded delay recovery is not

possible (state 5 is contained in a cycle of uncontrollable transitions). On the other hand state

4 does not have this property since it is possible to uncontrollably reach the illegal state from

state 4. It can be seen then that the computed nonfaulty part is supremal. The faulty states 6,

7, and 10 must be present in the overall subplant since those states are uncontrollably reached

from the nonfaulty states 2 and 3. Since the only way to recover from the faulty state 10

is through state 11, state 11 must also be included in the overall subplant. Finally removing

any controllable transition in the faulty part renders the overall subplant “fault-intolerant”. It

follows that the computed faulty part is minimal.

4.5 Optimality of Recovery Delay

The algorithm we proposed above computes an optimal fault-tolerant supervisor with the

properties that it

www.manaraa.com

78

• maximizes the achievable nonfaulty behavior,

• minimizes the achievable faulty behavior,

• ensures safety and nonblockingness, and

• ensures bounded-delay recovery.

In this section we show that the synthesized optimal fault-tolerant supervisor has the

following additional property that it

• minimizes the recovery-delay.

In the following we formally define the recovery-delay of a state, which is the maximum

over the length of the paths starting from the said state and ending at the first nonfaulty state.

Definition 11 Given a plant pair (G,GN) and a state x ∈ X, the recovery-delay of x,

ρ(x, (G,GN)), is defined as: ρ(x, (G,GN)) := max{|s| | α(x, s) ∈ XN ,∀t < s : α(x, t) 6∈ XN}.

For a nonfaulty state x ∈ XN , we let ρ(x, (G,GN)) = 0, and for a faulty state x ∈ X−XN

that is not attractable to the nonfaulty part, we let ρ(x, (G,GN)) = ∞.

Letting G̃N := supFN
G (GN) and G̃ ∈ MINFG̃N (G) with state set (X̃N , X̃), in the following

we prove that given any fault-tolerant subplant pair (G′, G′N) of (G,GN), for any state x ∈
X̃ − X̃N , ρ(x, (G′, G′N)) ≥ ρ(x, (G̃N , G̃)). First, we prove in the following lemma that the

recovery-delay of a faulty state equals to the order at which it is added to the region of

controllable attraction.

Lemma 1 Consider a plant pair (G,GN), an optimal fault-tolerant subplant (G̃, G̃N), and a

faulty state x ∈ X − XN . ∀k ≥ 1, x ∈ Ωk − Ωk−1 if and only if ρ(x, (G̃, G̃N)) = k, where

Ωk is the states included in the k-th iteration of the computation of the region of controllable

attraction Ωc
G(X̃N) (see Algorithm 1).

Proof: We prove by induction on k. For the base step, k = 1. For the forward implication,

suppose, x ∈ Ω1 − Ω0 = Ω1 − X̃N . Then by definition, α̃(x,Σ) ⊆ X̃N , and so it follows that

ρ(x, (G̃, G̃N)) = 1. On the other hand for the backward implication suppose ρ(x, (G̃, G̃N)) = 1.

www.manaraa.com

79

This implies the longest path from x to X̃N in G̃ is of length 1, implying that α̃(x,Σ) ⊆ X̃N ,

which in turn implies that x ∈ Ω1. Further since x is faulty, it follows that x ∈ Ω1 − XN ⊆
Ω1 − X̃N = Ω1 − Ω0.

For the inductive step, suppose ρ(x, (G̃, G̃N)) = n if and only if x ∈ Ωn−Ωn−1, and consider

the case when k = n+1. For the forward implication, since x ∈ Ωn+1−Ωn, then by definition,

α̃(x,Σ) ⊆ Ωn and there exists σ ∈ Σ such that α̃(x, σ) ∈ Ωn−Ωn−1. Therefore, ρ(x, (G̃, G̃N)) =

1 + ρ(α̃(x, σ), (G̃, G̃N)) = 1 + n. On the other hand, for the backward implication, suppose

ρ(x, (G̃, G̃N)) = 1 + n. This implies that there exists σ ∈ Σ such that ρ(α̃(x, σ), (G̃, G̃N)) = n.

From induction hypothesis, α̃(x, σ) ∈ Ωn − Ωn−1. Since x ∈ Ωc
G(X̃N), the fact that α̃(x, σ) ∈

Ωn − Ωn−1 implies x ∈ Ωn+1. On the other hand since ρ(x, (G̃, G̃N)) = 1 + n 6= n, it follows

from induction hypothesis that x 6∈ Ωn. Therefore, x ∈ Ωn+1−Ωn. This completes the proof.

Above lemma states that when a state is added in the region of controllable attraction in

the k-th step, the recovery-delay for this state in an optimal fault-tolerant control plant is k,

and vise versa. To establish the minimality of the recovery-delay, the following theorem shows

that any other controller has a larger recovery-delay.

Theorem 15 Consider a plant pair (G,GN), an optimal fault-tolerant subplant (G̃, G̃N), a

fault-tolerant subplant (G′, G′N) with X ′N = X̃N , and a faulty state x ∈ X̃ − X̃N . Then

ρ(x, (G′, G′N) ≥ ρ(x, (G̃, G̃N)).

Proof:

First note that if x 6∈ X ′, then ρ(x′, (G′, G′N)) = ∞ > ρ(x, (G̃, G̃N)). So it suffices to

consider x ∈ X ′. Then since x ∈ X̃− X̃N , x ∈ X ′− X̃N = X ′−X ′N . Suppose ρ(x, (G̃, G̃N)) =

k ≥ 1. Then from Lemma 1, x ∈ Ωk−Ωk−1, where Ωk is as defined in the statement of Lemma

1.

Suppose for contradiction that ρ(x, (G′, G′N)) < k. Then following the computation of

Ωc
G(X̃N) as given in Algorithm 1, it must be the case that x ∈ Ωj with j < k. This is a

contradiction to the fact that x ∈ Ωk − Ωk−1.

www.manaraa.com

80

4.6 Application Example

In this section, we provide an application example consisting of a simplified cooling-water

system for gas turbine, shown in Figure 4.11.

P1

compressor turbine

fuel

V2 V1

P2

Combustion

chamber

P3

P-17

Figure 4.11 A simplified cooling water system for gas turbine

In Figure 4.11, there are three cooling-water pumps (P1, P2, and P3), two fuel gas control

valves (V1 and V2), a compressor, a gas chamber, and a turbine. The fuel gas valves control

the fuel to the combustion chamber: higher the fuel supply, higher the turbine spinning speed,

and higher the combustion chamber temperature. V1 is the valve that operates under normal

conditions, whereas V2 is the emergency valve that operates when V1 is stuck. The cooling-

water is used to cool down the lubrication oil that lubricates the blade and shaft in the

combustion chamber. For simplicity, we suppose that the cooling-water is directly supplied

to the combustion chamber. Among the three pumps, P1 is the one that operates under the

normal conditions, and is called the leading pump. P2 is a standby pump, called the lagging

pump, and P3 is the emergency pump which is used when an emergency action is needed.

When the system is idling, the pumps are off and valves are closed. When the system is

turned on, emergency valve V2 is kept fully open, whereas valve V1 is controlled by a computer.

When the turbine is working, pump P1 circulates the cooling-water to take away the excess

www.manaraa.com

81

heat from the combustion. Under normal situation, P1 is adequate enough to keep the com-

bustion chamber temperature in an acceptable range. When more fuel is injected, the chamber

temperature increases. When a certain temperature limit T1 is surpassed, P2 is turned on to

bring the chamber temperature to normal. If the temperature continues to rise and surpasses

a higher limit T2, emergency pump P3 is turned on to further help cool down the chamber.

In our example, P2 and P3 together are assumed powerful enough to lower the temperature in

any situation provided they are turned on in a timely fashion.

In this example, the fuel control valve V1 or the compressor may incur fault. The valve may

get stuck open (so when less fuel is needed, a lot more is still sent to the combustion chamber).

Compressor may fault to supply air at a higher pressure, causing generation of excessive heat

in the combustion process. In this case the chamber temperature exceeds T1, and the correct

action after the occurrence of this fault is to turn on the lag pump P2. If the temperature

continues to rise, another temperature fault, which is the violation of limit T2, may occur. In

this case, the emergency pump P3 is also turned on. When both P2 and P3 are running, special

actions are taken to prevent the deterioration of the situation. Such special actions include

the control of the emergency valve V2 to limit the fuel, and the lowering of the air pressure

of the compressor to limit the air flow to the combustion chamber. These emergency actions

are canceled only when the temperature returns below T1. During the time the temperature is

rising, if both pumps are not turned on within a certain time, say t̃, the system may fail when

a certain temperature limit T3 is surpassed.

So, in this application, the two uncontrollable faulty events are the two temperature faults:

f1 Temperature limit T1 is violated

f2 Temperature limit T2 is violated

Also, there are two other uncontrollable events, corresponding to the decrease of the tem-

perature due to the starting of the pumps:

d1 Temperature decreases below T1

d2 Temperature decreases below T2

The feasible controllable events are:

www.manaraa.com

82

p2 Switch-on pump P2

p2 Switch-off pump P2

p3 Switch-on pump P3

p3 Switch-off pump P3

t2 Switch-on pump P2 in t̃ time

t3 Switch-on pump P3 in t̃ time

t Switch-on pump P2 or P3 after t̃ time

The states X are abstracted to represent the values of the 5 binary state variables, s1, . . . , s5,

the meanings of which are listed as follows:

Variable Meaning 1 0

s1 Pump P2 is on? yes no

s2 Pump P3 is on? yes no

s3 Temperature is over T1? yes no

s4 Temperature is over T2? yes no

s5 Temperature is over T3? yes no

Note since pump P1 remains on when the system is running, it’s not necessary to track the

state of P1.

The states −− 000 (− represents 1 or 0) are the normal states XN . Since when s4 is 1, s3

is also 1, there is no states of the form − − 01−. When s5 is 1, the system fails, and so such

states are called failed states, and are represented as the same state denoted F .

The abstracted model of the cooling-water system is shown in Figure 4.12. In Figure 4.12,

there are 12 “non-failed” states and one failed state. The initial state is also the final state,

which is shown as the double-circle state. All solid edges represent controllable events and all

dashed edges represent uncontrollable events. The dashed edges with double arrows are faulty

events. All events are observable.

As shown in Figure 4.12, the overall plant model G has 13 states. and the nonfaulty part

GN consists of the states where no fault has occurred, i.e., the states with label (−−000). The

www.manaraa.com

83

11

000

10

000

01

000

11

100

10

100

00

100

01

100

11

110

10

110

00

110

01

110

F

f1 f1 f1

f2 f2 f2

d1

d2

d1 d1

p2
p2

p2
p2

p3p3

p3 p3

p2
_

p2
_ p2

_

p2
_

p3
_

p3
_

p3
_

p3
_

t2
t2

t3 t3

p2
_ p2

_

p3
_

p3
_

t
_ t

_

t
_

G
N

00

000

Figure 4.12 Model of cooling-water system of Figure 4.11

www.manaraa.com

84

specification for the overall plant excludes all traces that reach the failed state, i.e., the failed

state is deem forbidden for the overall plant. State 00000 is the initial and the final state, and

the specification KN for the nonfaulty plant excludes all traces of GN that end at a non-final

state.

In the following we apply Algorithm 2 to compute the optimal fault-tolerant subplant. The

computation is accomplished in two steps. The result after the “Uncontrollable/blocking states

removal” step is shown in Figure 4.13. In this step, only the failed state is removed, since all

the transitions that reach the failed state are controllable.

11

000

10

000

01

000

11

100

10

100

00

100

01

100

11

110

10

110

00

110

01

110

f1 f1 f1

f2 f2 f2

d1

d2

d1 d1

p2
p2

p2
p2

p3p3

p3 p3

p2
_

p2
_ p2

_

p2
_

p3
_

p3
_

p3
_

p3
_

t2
t2

t3 t3

p2
_ p2

_

p3
_

p3
_

G
N

00

000

G

Figure 4.13 The controllable and nonblocking subplant of (G,GN)

For the ”optimal fault-tolerant subplant computation” step, we use Algorithm 1 to compute

the region of controllable attraction of the nonfaulty states, as well as the optimal fault-tolerant

subplant. Note that in this example all faulty states are controllably attractable except the

failed state. Such attractable states get added into the region of controllable attraction in five

iterations. During this computation, we also obtain the minimal set of transitions required for

achieving controllable attractability, ∆G(XN) = {(11100, d1, 11000), (11110, d2, 11100),

(10110, t3, 11110), (01110, t2, 11110), (10100, f2, 10110), (01100, f2, 01110), (00110, t2, 10110),

www.manaraa.com

85

(00100, f2, 00110), (10100, d1, 10000), (01100, d1, 01000)}. It turns out that every state in the

region of controllable attraction of the nonfaulty states is reachable from a nonfaulty state

by executing a sequence of uncontrollable transitions, followed by a sequence of transitions

belonging to the minimal set of transitions required for controllable attraction. Thus the

minimal fault-tolerant subplant includes all states of the region of controllable attraction of

the nonfaulty states, and the ”optimal fault-tolerant subplant computation” terminates in one

iteration. The resulting optimal fault-tolerant subplant is shown in Figure 4.14.

11

000

10

000

01

000

11

100

10

100

00

100

01

100

11

110

10

110

00

110

01

110

f1 f1 f1

f2 f2 f2

d1

d2

p2
p2

p3p3

p2
_ p2

_

p3
_

p3
_

t2
t2

t3

G
N

00

000

ΥG(X
N
)

d1 d1

Figure 4.14 The optimal fault-tolerant subplant ΥG(XN)

In Figure 4.14, it is clear that all faulty states are able to recover within a bounded delay.

It can be seen that the nonfaulty part is supremal, since no nonfaulty state or transition of

the nonfaulty part is removed, whereas the faulty part is minimal, since if any state or any

transition in the faulty part is removed, the plant will no longer remain fault-tolerant. Finally

it can be seen that safety and nonblockingness are also satisfied.

www.manaraa.com

86

4.7 Conclusion

A notion of fault-tolerant supervisory control was introduced in our prior work [Wen, Q.

and Kumar, R. and Huang, J. and Liu, H. (2007a)], [Wen, Q. and Kumar, R. and Huang,

J. and Liu, H. (2007b)], [Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2008)] where

the controlled system must not only satisfy the desired safety and progress properties but must

also be fault-tolerant, i.e., following the occurrence of any fault a recovery to a nonfaulty or

nonfaulty-equivalent state must occur within a bounded delay. Here we formulated the notion

of an optimal fault-tolerant supervisor to be one that maximizes the nonfaulty behavior and at

the same time minimizes the faulty behavior that must be tolerated, and also ensures safety,

nonblockingness, and bounded-delay recovery. We showed that while the problem in general

does not admit an optimal solution, an optimal solution does exist over the class of state-

feedback control policies. We presented an algorithm to find such an optimal solution. The

complexity of the algorithm is quadratic in the size of a given plant. The optimal fault-tolerant

supervisor is also shown to minimize the recovery-delay for any faulty state.

www.manaraa.com

87

CHAPTER 5. Decentralized Diagnosis of Event-Driven Systems for Safely

Reacting to Failures

For the fault-tolerant control framework that we presented in earlier chapters, the diagnosis

of a failure that may have occurred is not explicitly required. In this chapter we present a

method for the explicit diagnosis of a failure after it occurs. The failure must be diagnosed

prior to any safety specification is violated so that a recovery action can be taken.

In this chapter, we introduce the notion of safe-codiagnosability, extending the notion of

safe-diagnosability [Paoli, A. and Lafortune, S. (2005)] to the decentralized setting, where

there exist multiple diagnosers performing diagnosis using their own observations without

communicating to each other. For a system, a certain sub-behavior is deemed safe (captured

via a safety specification), and a further sub-behavior is deemed non-faulty (captured via a non-

fault specification). Safe-codiagnosability requires that when the system executes a trace that

is faulty, there exists at least one diagnoser that can detect this within bounded delay and also

before the safety specification is violated. The above notion of safe-codiagnosability may also

be viewed as an extension of the notion of codiagnosability [Qiu, W. and Kumar, R. (2004)],

where the latter did not have any safety requirement. We show that safe-codiagnosability is

equivalent to codiagnosability together with “zero-delay codiagnosability” of “boundary safe

traces”. (A safe trace is a boundary safe trace, if exists a single-event extension that is unsafe.)

We give an algorithm of polynomial complexity for verifying safe-codiagnosability. For a safe-

codiagnosable system, the same methods as those proposed in [Qiu, W. and Kumar, R. (2004)]

can be applied for off-line synthesis of individual diagnosers, as well as for on-line diagnosis

using them.
0This research was a cooperative achievement with Wenbin Qiu (ISU 2006 graduate).

www.manaraa.com

88

5.1 Introduction

Failure diagnosis is an active area of research, and has received considerable attention

in the literature. A failure is a deviation from an expected or desired behavior. Various

approaches have been proposed for failure diagnosis, including fault-trees, expert systems,

neural networks, fuzzy logic, Bayesian networks, and analytical redundancy [Pouliezos, A. D.

and Stavrakakis, G. S. (1994)]. These are broadly categorized into non-model based (where

observed behavior is matched to known failures), and model based (where observed behavior

is compared against model predictions for any abnormality).

For discrete event systems (DESs) – systems with discrete states that change when certain

events occur, a certain model based approach for failure diagnosis is proposed in [Sampath,

M. and Sengupta, R. and Lafortune, S. and Sinaamohideen, K. and Teneketzis, D. (1995)].

The property of diagnosability requires that once a failure has occurred, it be detected and

diagnosed within bounded “delay” (within bounded number of transitions). The diagnosability

can be tested polynomially as shown later in [Jiang, S. and Huang, Z. and Chandra, V. and

Kumar, R. (2001)], [Yoo, T. S. and Lafortune, S. (2002)]. In [Sampath, M. and Lafortune,

S. (1998)], the notion of active failure diagnosis was introduced where control is exercised

to meet given specifications while satisfying diagnosability. In [Das, S. R. and Holloway,

L. E. (2000)], [Pandalai, D. and Holloway, L. (2000)], a template based approach was

developed for failure diagnosis in timed discrete event system. The above approaches can be

thought to be “event-based” as failure is modeled as execution of certain “faulty events”. An

equivalent “state-based” approach was considered in [Lin, F. (1994)], [Zad, S. H. and Kwong,

R. H. and Wonham, W. M. (2003)], where the occurrence of a failure is modeled as reaching

of certain “faulty states”. To facilitate generalization of failure specifications, linear-time

temporal logic (LTL) based specification and diagnosis of its failure was proposed in [Jiang, S.

and Kumar, R. (2004)]. A theory for failure diagnosis of repeatedly-occurring/intermittent

failures was introduced in [Jiang, S. and Kumar, R. and Garcia, H. E. (2003)].

The above mentioned work dealt with centralized failure diagnosis, where a central di-

agnoser is responsible for failure detection and diagnosis in the system. [Debouk, R. and

www.manaraa.com

89

Lafortune, S. and Teneketzis, D. (2000)] addressed the problem of distributed failure di-

agnosis based on a “coordinated decentralized architecture”, where local diagnosers do not

communicate with each other directly, but send local information to a coordinator. Then the

coordinator makes the final diagnosis decision. [Sengupta, R. and Tripakis, S. (2002)] dis-

cussed the distributed diagnosis problem, where communication directly exists between local

diagnosers, and is assumed to be lossless, and in order. Notion of “decentralized diagnosis” was

formulated, which was proved to be undecidable. The decentralized diagnosis problem with

asymmetric communication was discussed in [Boel, R. K. and van Schuppen, J. H. (2002)],

where communication is one-way and without delays. In a prior work [Qiu, W. and Kumar,

R. (2004)], we studied the problem of decentralized failure diagnosis, where the system fail-

ure is diagnosed by multiple local diagnosers. A notion of codiagnosability was introduced to

capture the fact that the occurrence of any failure must be diagnosed within bounded delay

by at least one local diagnoser using its own observations of the system execution. Polynomial

algorithms were provided for (i) testing codiagnosability, (ii) computing the delay bound of

diagnosis, (iii) off-line synthesis of diagnosers, and (iv) on-line diagnosis using them.

In order to react to a failure in a timely fashion, while it is necessary that the failure be

detected within a bounded delay, such a property alone is not sufficient. It is also needed that

the detection occur before the system behavior becomes “unsafe”. To capture this additional

requirement for failure detection, the notion of safe-diagnosability was introduced in [Paoli,

A. and Lafortune, S. (2005)]. We extend this notion to the decentralized setting, where

there exist multiple diagnosers performing diagnosis using their own observations without

communicating to each other, by formulating the notion of safe-codiagnosability. For a system,

a certain sub-behavior is deemed safe (captured via a safety specification), and a further sub-

behavior is deemed non-faulty (captured via a non-fault specification). The safe behavior

includes all of non-faulty behavior and some of post-fault behavior where system performance

may be degraded but still tolerable. Safe-codiagnosability requires that when the system

executes a trace that is faulty, then exists at least one diagnoser that can detect this within

bounded delay and also before the safety specification is violated. The above notion of safe-

www.manaraa.com

90

codiagnosability may also be viewed as an extension of the notion of codiagnosability [Qiu,

W. and Kumar, R. (2004)], where the latter did not have any safety requirement. We

show that safe-codiagnosability is equivalent to codiagnosability together with “zero-delay

codiagnosability” of “boundary safe traces”. (A safe trace is a boundary safe trace, if exists

a single-event extension that is unsafe.) We give an algorithms of polynomial complexity

for verifying safe-codiagnosability. (The verification algorithm presented in [Paoli, A. and

Lafortune, S. (2005)] was based upon the structural property of a deterministic diagnoser,

and had an exponential complexity owing to the exponential size of the diagnoser.) For a

safe-codiagnosable system, the same methods as those proposed in [Qiu, W. and Kumar,

R. (2004)] can be applied for off-line synthesis of individual diagnosers, as well as for on-line

diagnosis using them.

5.2 Notions and Preliminaries

Given an event set Σ, Σ∗ is used to denote the set of all finite length event sequences

over Σ, including the zero length event sequence ε. A member of Σ∗ is a trace and a subset of

Σ∗ is a language. Given a language K ⊆ Σ∗, the complement of K, denoted Kc ⊆ Σ∗, is defined

as Kc := Σ∗ − K. If trace t is a prefix of trace s, it is denoted as t ≤ s. Given a language

K ⊆ Σ∗, its prefix-closure, denoted pr(K), is defined as, pr(K) := {s ∈ Σ∗|∃t ∈ K s.t. s ≤ t},
and K is said to be prefix-closed if K = pr(K). The supremal prefix-closed sublanguage of

K, denoted supP (K) ⊆ K, is defined as, supP (K) := {s ∈ K|pr(s) ⊆ K}. The quotient of

K1 with respect to K2 is defined as K1/K2 := {s ∈ Σ∗|∃t ∈ K2 s.t. st ∈ K1}. The set of

deadlocking traces of a language K are those traces from which no further extensions exist in

K, i.e., s ∈ K is deadlocking trace if {s}Σ∗ ∩K = {s}.
A DES is modeled as a finite state machine (FSM)/finite automaton (FA) G and is denoted

by G(X, Σ, α, x0), where X is the set of states, Σ is the finite set of events, x0 ∈ X is the

initial state, and α : X × Σ̄ → 2X is the transition function, where Σ̄ := Σ ∪ {ε}. G is said

to be deterministic if |α(·, ·)| ≤ 1 and |α(·, ε)| = 0; otherwise, it is called nondeterministic.

(x, σ, x′) ∈ X × Σ̄×X is a transition of G if x′ ∈ α(x, σ); it is an ε-transition if σ = ε. Letting

www.manaraa.com

91

ε∗(x) denote the set of states reachable from x in zero or more ε-transitions, the transition

function α can be extended from domain X × Σ̄ to domain X × Σ∗ recursively as follows:

∀x ∈ X, s ∈ Σ∗, σ ∈ Σ, α(x, ε) = ε∗(x), and α(x, sσ) = ε∗(α(α(x, s), σ))). The generated

language by G is defined as L(G) := {s ∈ Σ∗|α(x0, s) 6= ∅}, i.e., it includes all traces that can be

executed from the initial state of G. States reached by execution of deadlocking traces in L(G)

are called deadlocking states. A path in G is a sequence of transitions (x1, σ1, x2, · · · , σn−1, xn),

where σi ∈ Σ̄ and xi+1 ∈ α(xi, σi) for all i ∈ {1, · · · , n−1}. The path is called a cycle if x1 = xn.

Given an automaton G = {X, Σ, α, x0}, the complete model of G is defined as Ḡ =

{X̄, Σ, ᾱ, x0}, where X̄ := X ∪ {F}, and ᾱ is defined as follows.

∀x̄ ∈ X̄, σ ∈ Σ, ᾱ(x̄, σ) :=





α(x̄, σ), if [x̄ ∈ X] ∧ [α(x̄, σ) 6= ∅]
F, if [x̄ = F] ∨ [α(x̄, σ) = ∅]

.

Since all events are defined at each state, the complete model Ḡ generates the language Σ∗,

i.e., L(Ḡ) = Σ∗.

Given two automata G = (X, Σ, α, x0) and R = (Y,Σ, β, y0), the synchronous composition

of G and R is defined as, G||R = (X × Y,Σ, γ, (x0, y0)) such that

∀(x, y) ∈ X × Y, σ ∈ Σ̄, γ((x, y), σ) :=





α(x, σ)× β(y, σ), if σ 6= ε;

(α(x, ε)× {y}) ∪ ({x} × β(y, ε)), otherwise.

If the system execution is observed through a single global observer, we can define a global

observation mask as M : Σ̄ → ∆̄ with M(ε) = ε, where ∆̄ := ∆ ∪ {ε} and ∆ is the set

of observed symbols. The definition of M can be extended from events to event sequences

inductively as follows:

M(ε) = ε; ∀s ∈ Σ∗, σ ∈ Σ,M(sσ) = M(s)M(σ).

Given an automaton G and mask M , M(G) is the masked automaton of G with each transition

(x, σ, x′) of G replaced by (x,M(σ), x′). The local observation masks associated with different

www.manaraa.com

92

local observers are defined as Mi : Σ̄ → ∆̄i (i ∈ I = {1, · · · ,m}), where m is the number of

local observers, ∆̄i := ∆i ∪ {ε} and ∆i is the set of locally observed symbols.

5.3 Safe-Codiagnosability

In this section, we present the definition of safe-codiagnosability and the “separation

property” of safe-codiagnosability. As described in [Qiu, W. and Kumar, R. (2004)], for the

purpose of diagnosis, a system with deadlocking states can be converted to a deadlock free system

by adding a self-loop labeled ε at each of its deadlocking state without affecting the diagnosis

analysis. So without loss of generality, we assume a system to be diagnosed, a “plant”, to be

deadlock free.

Definition 12 [Qiu, W. and Kumar, R. (2004)] Let L be the prefix-closed language gener-

ated by a plant, and K be a prefix-closed sublanguage specifying the non-faulty plant behavior

(K = pr(K) ⊆ L). Assume there are m local sites with observation masks Mi : Σ̄ → ∆̄i

(i ∈ I = {1, · · · ,m}). (L, K) is said to be codiagnosable with respect to {Mi} if

(∃n ∈ N)(∀s ∈ L−K)(∀st ∈ L−K, |t| ≥ n) ⇒

(∃i ∈ I)(∀u ∈ M−1
i Mi(st) ∩ L, u ∈ L−K) (5.1)

In the following lemma we provide an alternative definition of codiagnosability.

Lemma 2 Let L and K be prefix-closed plant and non-fault specification languages respec-

tively, and for i ∈ I, Mi be observation mask of site i. Then (L,K) is codiagnosable with

respect to {Mi} if and only if

∃n ∈ N : [(L−K)Σ≥n ∩ L] ∩
i∈I

M−1
i Mi(K) = ∅.

Proof: The condition (5.1) in definition of codiagnosability requires that exists a local site i

such that any st-indistinguishable u at site i is faulty (u ∈ L−K). This can be rephrased as

saying that it is not the case that for each site i exists a st-indistinguishable non-faulty trace

www.manaraa.com

93

ui ∈ K, i.e.,

¬(∀i ∈ I)(∃ui ∈ M−1
i Mi(st) ∩ L, ui ∈ K) (5.2)

The set of traces,

{w | ∀i ∈ I, ∃ui ∈ M−1
i Mi(w) ∩ L, ui ∈ K}

is same as the set of traces ∩
i∈I

M−1
i Mi(K). Thus the condition (5.2) can be equivalently written

as, st 6∈ ∩
i∈I

M−1
i Mi(K).

Further since st ∈ L is a feasible extension of a faulty trace s ∈ L−K with length of t at

least the delay bound n, st ∈ L∩ (L−K)Σ≥n. It follows that the definition of codiagnosability

of (L,K) may be rephrased as,

∃n ∈ N : [(L−K)Σ≥n ∩ L] ∩
i∈I

M−1
i Mi(K) = ∅.

Remark 7 We can introduce the notion of “zero delay codiagnosability” by setting n = 0 in

the definition of codiagnosability provided by Lemma 2. Then (L,K) is said to be zero-delay

codiagnosable with respect to {Mi} if

(L−K) ∩
i∈I

M−1
i Mi(K) = ∅. (5.3)

We say a faulty sublanguage H ⊆ L −K is zero-delay codiagnosable with respect to {Mi} if

H ∩
i∈I

M−1
i Mi(K) = ∅.

Note that (5.3) is equivalent to,

∩
i∈I

M−1
i Mi(K) ∩ L ⊆ K,

i.e., (L,K) is zero-delay codiagnosable if and only if the non-faulty behavior K is decomposable

[Rudie, K. and Wonham, W. M. (1992)] with respect to the non-faulty+faulty (plant) behavior

L.

www.manaraa.com

94

Definition 12 captures the system property that a failure event can be diagnosed within

bounded delay after its occurrence by at least one of the local sites. In order to react to a

failure in a timely fashion, it is also needed that a failure be detected before system behavior

becomes “unsafe”. Safe behavior includes all of non-faulty behavior and some of post-fault be-

havior where system performance may be degraded but still tolerable. The safety specification,

denoted KS , is another prefix-closed sublanguage of plant language, containing the non-fault

specification, i.e., K ⊆ KS ⊆ L. Then the notion of safe-codiagnosability can be formalized as

follows.

Definition 13 Let L be the prefix-closed language generated by a plant, and K and KS be

prefix-closed non-fault and safety specification languages contained in L, respectively (K ⊆
KS ⊆ L). Assume there are m local sites with observation masks Mi : Σ̄ → ∆̄i (i ∈ I =

{1, · · · ,m}). (L, K,KS) is said to be safe-codiagnosable with respect to {Mi} if

(∃n ∈ N)(∀s ∈ L−K)(∀st ∈ L−K, |t| ≥ n) ⇒

(∃i ∈ I)(∃v ∈ pr(st) ∩KS)

(∀u ∈ M−1
i Mi(v) ∩ L, u ∈ L−K) (5.4)

Definition 13 has the following meaning. A system is safe-codiagnosable if there exists a

delay bound n such that for all faulty trace s ∈ L − K and all extension t of s with length

longer than delay bound (|t| ≥ n), there exists a site i and a safe prefix v of st such that for

all v-indistinguishable u at site i, u is a faulty trace in L−K. Informally, Definition 13 means

that for any faulty trace, there exists at least one local site that can unambiguously detect

that failure within bounded delay and before safety is violated.

Just as we provided an alternative definition of codiagnosability in Lemma 2, we provide

an alternative definition of safe-codiagnosability in the following lemma.

Lemma 3 Let L,K, and KS be prefix-closed plant, non-fault specification, and safety specifi-

cation languages respectively, and for i ∈ I, Mi be observation mask of site i. Then (L,K, KS)

www.manaraa.com

95

is safe-codiagnosable with respect to {Mi} if and only if

∃n ∈ N : [(L−K)Σ≥n ∩ L]

∩supP [∩
i∈I

M−1
i Mi(K) ∪Kc

S] = ∅.

Proof: The condition (5.4) in definition of codiagnosability requires that exists a local site i

and a safe prefix v ≤ st such that any v-indistinguishable u at site i is faulty (u ∈ L − K).

This can be rephrased as saying that it is not the case that for each site i for each safe prefix

v ≤ st exists a v-indistinguishable non-faulty trace ui ∈ K, i.e.,

¬(∀i ∈ I)(∀v ∈ pr(st) ∩KS)

(∃ui ∈ M−1
i Mi(v) ∩ L, ui ∈ K) (5.5)

The set of traces,

{w | ∀i ∈ I,∀v ∈ pr(w) ∩KS ,

∃ui ∈ M−1
i Mi(v) ∩ L, ui ∈ K}

is same as the set of traces,

{w | pr(w) ∩KS ⊆ ∩
i∈I

M−1
i Mi(K)},

which is the same set of traces,

{w | pr(w) ⊆ ∩
i∈I

M−1
i Mi(K) ∪Kc

S},

which is the set

supP [∩
i∈I

M−1
i Mi(K) ∪Kc

S],

Note that a trace w belongs to this last set if and only if pr(w) ⊆ [∩
i∈I

M−1
i Mi(K) ∪Kc

S], i.e.,

each prefix of w has the property that it is either unsafe (belongs to Kc
S) or for each i exists

www.manaraa.com

96

Mi-indistinguishable trace ui ∈ K.

Thus the condition (5.5) can be equivalently written as, st 6∈ supP [∩
i∈I

M−1
i Mi(K) ∪Kc

S].

On the other hand, based on the arguments used in the proof of Lemma 2, we know that

st ∈ L ∩ (L−K)Σ≥n. It follows that the definition of safe-codiagnosability of (L,K) may be

rephrased as,

∃n ∈ N : [(L−K)Σ≥n ∩ L]

∩supP [∩
i∈I

M−1
i Mi(K) ∪Kc

S] = ∅.

To facilitate the development of a test for safe-codiagnosability, we show that the prop-

erty of safe-codiagnosability can be separated into codiagnosability together with zero-delay

codiagnosability of set of boundary safe traces, where a boundary safe trace is a safe trace for

which exists a single-event extension that is unsafe.

Definition 14 Given prefix-closed plant language L and safety specification language KS , a

safe trace s ∈ KS is called a boundary safe trace if exists σ ∈ Σ such that sσ ∈ L −KS , i.e.,

s ∈ [(L−KS)/Σ]∩KS . The set of all boundary safe traces is called the boundary safe language,

denoted K∂
S , and is given by K∂

S = [(L−KS)/Σ] ∩KS .

We need the result of the following lemma before establishing the main “separation” result.

Lemma 4 Consider the prefix-closed non-fault specification language K and the observation

masks {Mi} (i ∈ I). Then ∩
i∈I

M−1
i Mi(K) is prefix-closed.

Proof: Prefix-closure of K implies prefix-closure of M−1
i Mi(K) for each i ∈ I. So the result

follows since prefix-closure is preserved under intersection.

The following theorem presents the “separation property” of safe-codiagnosability, based

on which we develop the test for safe-codiagnosability.

Theorem 16 Let L, K and KS be plant language, non-fault specification language, and safety

specification language, respectively. (L,K, KS) is safe-codiagnosable with respect to {Mi} if

www.manaraa.com

97

and only if

1. (L,K) codiagnosable with respect to {Mi}:

∃n ∈ N : [(L−K)Σ≥n ∩ L] ∩
i∈I

M−1
i Mi(K) = ∅;

2. K∂
S zero-delay codiagnosable with respect to {Mi}: K∂

S ∩
i∈I

M−1
i Mi(K) = ∅.

Proof: (⇐) From the property of codiagnosability exists a delay bound n such that condition

of codiagnosability is satisfied. We claim that the same delay bound works for the definition

of safe-codiagnosability. To see this, pick s ∈ L−K and t ∈ Σ∗ such that |t| ≥ n and st ∈ L.

Then st ∈ [(L−K)Σ≥n∩L]. We need to show that st 6∈ supP [∩
i∈I

M−1
i Mi(K)∪Kc

S], i.e., exists

a prefix v ≤ st such that v 6∈ ∩
i∈I

M−1
i Mi(K) ∪ Kc

S . Since L − K = (KS − K) ∪ (L − KS),

st ∈ L−K implies either st ∈ KS −K or st ∈ L−KS .

For the first case (st ∈ KS − K), we can set v = st. Then v is a prefix of st, and

also since v = st ∈ KS , it holds that v 6∈ Kc
S . It remains to be shown that v = st 6∈

∩
i∈I

M−1
i Mi(K), which holds from the property of codiagnosability since st ∈ [(L−K)Σ≥n∩L]

and [(L−K)Σ≥n ∩ L] ∩
i∈I

M−1
i Mi(K) = ∅.

For the second case (st ∈ L−KS), suppose for contradiction that for every prefix v ≤ st,

it holds that v ∈ ∩
i∈I

M−1
i Mi(K) ∪ Kc

S . Since st ∈ L − KS , exists a prefix w ≤ st that is a

boundary safe trace, i.e., w ∈ K∂
S . From our supposition, w ∈ ∩

i∈I
M−1

i Mi(K) ∪Kc
S . So,

w ∈ [L−KS)/Σ ∩KS] ∩ [∩
i∈I

M−1
i Mi(K) ∪Kc

S]

= [L−KS)/Σ ∩KS] ∩ [∩
i∈I

M−1
i Mi(K)].

Then we arrive at a contradiction to the condition: K∂
S ∩

i∈I
M−1

i Mi(K) = ∅.
(⇒) From Lemma 3 we have,

∃n ∈ N : [(L−K)Σ≥n ∩ L]

www.manaraa.com

98

∩supP [∩
i∈I

M−1
i Mi(K) ∪Kc

S] = ∅.

This implies,

∃n ∈ N : [(L−K)Σ≥n ∩ L]

∩supP [∩
i∈I

M−1
i Mi(K)] = ∅.

Further from Lemma 4, supP [∩
i∈I

M−1
i Mi(K)] = ∩

i∈I
M−1

i Mi(K). So we also have

∃n ∈ N : [(L−K)Σ≥n ∩ L] ∩
i∈I

M−1
i Mi(K) = ∅,

establishing the codiagnosability.

Next to show the zero-delay codiagnosability of boundary safe traces, pick a boundary

safe trace w ∈ K∂
S . Then exists σ ∈ Σ such that wσ ∈ L − KS , and we need to show

that w 6∈ ∩
i∈I

M−1
i Mi(K). Set s = wσ ∈ L − KS ⊆ L − K, and pick t such that |t| ≥

n and st ∈ L (which is possible from our underlying assumption of plant being deadlock

free). Then st ∈ [(L − K)Σ≥n ∩ L]. From the assumption of safe-codiagnosability, st 6∈
supP [∩

i∈I
M−1

i Mi(K)∪Kc
S], which implies every prefix of st, including w 6∈ ∩

i∈I
M−1

i Mi(K)∪Kc
S .

From this it follows that w 6∈ ∩
i∈I

M−1
i Mi(K), as desired.

5.4 Verification of Safe-Codiagnosability

The algorithm for verifying safe-codiagnosability is based upon checking whether there

exists a situation that violates the conditions of safe-codiagnosability. From Theorem 16, we

know that safe-codiagnosability can be verified by checking codiagnosability of (L,K) together

with zero-delay codiagnosability of K∂
S , the set of boundary safe traces.

Algorithm 3 Consider the finite state machine models, G = (X, Σ, α, x0), R = (Y, Σ, β, y0),

and RS = (YS , Σ, βS , yS
0), respectively, of the plant, the non-fault specification, and the safety

specification. The corresponding plant, non-fault specification, and safety specification lan-

guages are L = L(G),K = L(R), and KS = L(RS), respectively, where K ⊆ KS ⊆ L. Let

www.manaraa.com

99

Mi be the observation mask of site i (i ∈ I). To check the safe-codiagnosability of (L,K, KS),

perform the following steps:

Step 1: Check the codiagnosability of (L,K)

Construct a testing automaton

T = (G‖R̄)×R×R

for verifying the codiagnosability of (L,K). This automaton is defined as T = (Z, ΣT , γ, z0),

where

• Z = (X × Ȳ)× Y × Y .

• ΣT = Σ̄3, where Σ̄ = Σ ∪ {ε}.

• z0 = ((x0, y0), y0, y0).

• γ : Z × Σ̄3 → Z is defined as: ∀z = ((x, y), y1, y2) ∈ Z, σT = (σ, σ1, σ2) ∈ ΣT − {(ε, ε, ε)},
γ(z, σT) := ((α(x, σ), β̄(y, σ)), β(y1, σ1), β(y2, σ2)) if and only if

[M1(σ) = M1(σ1)] ∧ [M2(σ) = M2(σ2)]

∧[(α(x, σ) 6= ∅) ∨ (β(y, σ) 6= ∅) ∨ (β(y1, σ1) 6= ∅) ∨ (β(y2, σ2) 6= ∅)]

Note that the silent-transition ε is defined at each state of any automaton as a self loop by

default. The testing automaton T is used to track if exists a triplet of traces s, u1 and u2 such

that ui is a s-indistinguishable non-fault trace under mask Mi (i ∈ {1, 2}).
Then check if exists an “offending cycle” clT = (zk, σk

T , zk+1, · · · , zl, σl
T , zk) such that

∃i ∈ [k, l] s.t. (ȳi = F) ∧ (σi 6= ε), (5.6)

where zi = ((xi, ȳi), yi
1, y

i
2) ∈ Z, and σi

T = (σi, σi
1, σ

i
2) ∈ ΣT . If the answer is yes, then (L,K)

is not codiagnosable, and (L,K, KS) is not safe-codiagnosable as well. Otherwise, go to the

next step.

www.manaraa.com

100

Step 2: Compute the set of “boundary safe states” B in G‖RS

Construct the composition G‖RS , and define the set of boundary safe states as, B :=

{(x, yS) ∈ X × YS |∃σ ∈ Σ : α(x, σ) 6= ∅, βS(yS , σ) = ∅}. Note that if s ∈ L(G‖RS) =

L(G)∩L(RS) = L∩KS = KS is such that execution of s results in reaching a state (x, yS) ∈ B,

then exists σ ∈ Σ such that sσ ∈ L−KS , i.e., s ∈ (L−KS)/Σ. It follows that s ∈ K∂
S .

Step 3: Check the zero-delay codiagnosability of K∂
S with respect to {Mi}

Construct a testing automaton

TS = (G‖RS)×R×R

for verifying the zero-delay codiagnosability of K∂
S , where TS is obtained by replacing R̄ by RS

in the testing automaton T constructed above. Let TS = (ZS , ΣT , γS , zS
0), where ZS , γS , and

zS
0 of TS are defined similarly as Z, γ, and z0 of T , respectively (with R̄ replaced by RS).

Then check if exists an “offending state” ((x, yS), y1, y2) in TS with (x, yS) ∈ B. K∂
S is

zero-delay codiagnosable if and only if the answer is no. If K∂
S is zero-delay codiagnosable,

then (L,K, KS) is safe-codiagnosable as well (since (L,K) was determined to be codiagnosable

above). Otherwise, (L,K, KS) is not safe-codiagnosable.

Since the correctness of the test for checking codiagnosability was established in [(Qiu, W.

and Kumar, R. , 2004, Theorem 1)], in the following theorem we show the correctness of the

test for checking zero-delay codiagnosability of K∂
S .

Theorem 17 K∂
S is not zero-delay codiagnosable with respect to {Mi} if and only if there

exists a state zS = ((x, yS), y1, y2) in the testing automaton TS with (x, yS) ∈ B.

Proof: (⇐) If there is a state ((x, yS), y1, y2) in TS such that (x, yS) ∈ B, then exist traces

s ∈ L(G‖RS), ui ∈ L(R) = K such that (i) s ∈ K∂
S = (L − KS)/Σ ∩ KS , and (ii) Mi(s) =

Mi(ui). This implies that s ∈ K∂
S ∩

i∈I
M−1

i Mi(K), i.e., K∂
S ∩

i∈I
M−1

i Mi(K) 6= ∅. Thus, K∂
S is

not zero-delay codiagnosable with respect to {Mi}.
(⇒) If K∂

S is not zero-delay codiagnosable with respect to {Mi}, then exists a boundary

safe trace s ∈ K∂
S such that s ∈ ∩

i∈I
M−1

i Mi(K), which implies that for i = 1, 2, there exist

www.manaraa.com

101

ui ∈ K such that Mi(ui) = Mi(s). Then execution of the trace triple (s, u1, u2) in TS results

in a state ((x, yS), y1, y2). Since s ∈ K∂
S , (x, yS) ∈ B, proving the assertion.

From Lemma 17 and [Qiu, W. and Kumar, R. (2004)], we get the following corollary

showing the correctness of Algorithm 3.

Corollary 5 Let G = (X, Σ, α, x0), R = (Y,Σ, β, y0) and RS = (YS , Σ, βS , yS
0) be the plant,

non-fault specification and safety specification models, respectively, with [K = L(R)] ⊆ [KS =

L(RS)] ⊆ [L = L(G)]. Let Mi be the observation mask of site i (i ∈ I). (L,K,KS) is not

safe-codiagnosable with respect to {Mi} if and only if one of the following conditions holds:

1. There exists an “offending” cycle

clT = (zk, σk
T , zk+1, · · · , zl, σl

T , zk)

as defined in (5.6) in the testing automaton T ;

2. There exists a “offending” state zS = ((x, yS), y1, y2) in the testing automaton TS with

(x, yS) ∈ B.

Remark 8 Let |X|, |Y | and |YS | be the number of states in plant G, non-fault specification

R, and safety specification RS respectively, and |Σ| be the number of events. L = L(G),K =

L(R), KS = L(RS). Assume there are m local sites. It was shown in [Qiu, W. and Kumar,

R. (2004)] that the complexity for constructing the testing automaton T and checking codi-

agnosability of (L,K) is O(|X| × |Y |m+1 × |Σ|m+1). Using a similar analysis, we can verify

that the complexity for constructing the testing automaton TS and checking the zero-delay

codiagnosability of K∂
S is O(|X| × |YS | × |Y |m × |Σ|m+1). It follows that overall complexity of

checking safe-codiagnosability of (L,K,KS) is, O(|X| × (|Y |+ |YS |)× |Y |m × |Σ|m+1).

Remark 9 In Algorithm 3, we use two testing automata T and TS to verify safe-codiagnosability

of (L,K, KS). These two testing automata can be combined into a testing automaton T ′ =

(G‖RS‖R̄)×R×R by replacing R̄ by RS‖R̄ in T . Then, (L,K, KS) is not safe-codiagnosable

if and only if there exists an “offending cycle” containing a state with the third coordinate

www.manaraa.com

102

labeled by “F”, or exists an “offending state” with its first pair of coordinates contained in B.

However, in this case, the complexity is O(|X| × |YS | × |Y |m+1 × |Σ|m+1), which is an order

higher. Thus the “separation” result obtained in Theorem 16 provides an order reduction in

the complexity of testing safe-codiagnosability.

Once a system is deemed safe-codiagnosable, the same methods as those presented in [Qiu,

W. and Kumar, R. (2004)] can be applied for the synthesis of local diagnosers as well as for

on-line diagnosis using them. This is because a diagnoser simply observes the plant behavior

and reports a fault when it becomes certain about it. The property of safe-codiagnosability

guarantees that at least one diagnoser become certain within bounded delay of the occurrence

of a fault and prior to the system behavior becoming unsafe. Details are omitted here.

The following example illustrates how to verify the safe-codiagnosability using Algorithm

3.

Example 6 Figure 5.1 (a), (b) and (c) show a plant model G, a non-fault specification model

R, and a safety specification model RS . The set of events is given by Σ = {a, b, f}. There are

two local sites, with their observation masks given as follows:

• M1(a) = a,M1(b) = M1(f) = ε;

• M1(b) = b,M2(a) = M2(f) = ε.

It can be verified that (L(G), L(R)) is codiagnosable with respect to {Mi} by constructing a

testing automaton T = (G‖R̄)×R×R, which is omitted here.

Since L = L(G) = pr(ab∗ + faab∗) and KS1 = pr(ab∗ + fa), the boundary safe language

K∂
B1

= [(L−KS1)/Σ] ∩KS1 = {fa}. Following the trace fa, state “3” in G and state “3” in

RS1 are reached. Thus, the set of boundary safe states is given by, B1 = {(3, 3)}. Figure 5.1

(d) shows a part of the testing automaton TS1 = (G‖RS1) × R × R, where an offending state

((3, 3), 1, 1) is reached. Therefore, K∂
B1

is not zero-delay codiagnosable with respect to {Mi},
and thus (L,K,KS1) is not safe-codiagnosable with respect to {Mi} as well.

Now, if we relax the safety requirement by considering a new enlarged safety specification

model RS2 as shown in Figure 5.2 (a), the system becomes safe-codiagnosable. To see this, since

www.manaraa.com

103

KS2 = pr(ab∗ + faa), the boundary safe language is given by, K∂
B2

= [(L−KS2)/Σ] ∩KS2 =

{faa}. Thus, the set of boundary safe states is given by, B2 = {(4, 4)}. The new testing

automaton TS2 = (G‖RS2) × R × R is shown in Figure 5.2 (b), where no offending states

(states with first pair of coordinates being (4, 4)) are reached. Therefore, K∂
B2

is zero-delay

codiagnosable with respect to {Mi}, and thus (L,K, KS2) is safe-codiagnosable with respect

to {Mi} as well.0 12 3 4af a ab b 0 1a b
0 12 3af a b ((3,3),1,1)((0,0),0,0)((2,2),0,0)...aaa aaε εεafεεaaε εεaaaa(a) Plant G (b) Non-fault specification R

(c) Safe specification RS1 (d) Testing automaton TS1 = (G || RS1) x R x R
Figure 5.1 Models G, R and RS1, and testing automaton TS1 (right)

5.5 Conclusion

This paper studies the property of being able to react safely to failures in a decen-

tralized setting. For this purpose a notion of safe-codiagnosability is introduced by extending

the notion of safe-diagnosability [Paoli, A. and Lafortune, S. (2005)] to the decentralized

setting. Safe-codiagnosability captures the property that when a system executes a trace that

is faulty, there exists at least one diagnoser that can detect this within bounded delay and also

before the system behavior becomes “unsafe”. Necessary and sufficient conditions for safe-

www.manaraa.com

104

aaaaaεεεa fεε((0,0),0,1) ((1,1),1,0) ((1,1),1,1) ((3,3),1,1) ((3,3),1,0)((2,2),0,1)((0,0),0,0) ((2,2),0,0)εεa,εbaaaε aaa aaεaaεεεabbb, bεb, εbε εbεεbε εbεεεa,εba(a) Safe specification RS2
(b) Testing automaton TS2 = (G || RS2) x R x R

0 12 3 4af a ab
Figure 5.2 Safe specification model RS2 and testing automaton TS2

codiagnosability are established, showing that safe-codiagnosability can be separated into the

properties of codiagnosability together with “zero-delay codiagnosability” of “boundary safe

traces”. Algorithm with polynomial complexity is provided for verifying safe-codiagnosability.

For a safe-codiagnosable system, the same methods as those for a codiagnosable system are

applicable for the synthesis of local diagnosers as well as for on-line diagnosis using them.

www.manaraa.com

105

CHAPTER 6. Conclusion

6.1 Summarization of Dissertation

The main contributions of this dissertation on fault-tolerant supervisory control of discrete

event systems include:

1. In this dissertation, we propose the problem of fault-tolerant supervisory control. Given

a plant, possessing both faulty and nonfaulty behaviors, and a submodel for just the

nonfaulty part, the goal of fault-tolerant supervisory control is to enforce a certain spec-

ification for the nonfaulty plant and another (perhaps more liberal) specification for

the overall plant, and further to ensure that the plant recovers from any fault within a

bounded delay so that following the recovery the system state is equivalent to a nonfaulty

state (as if no fault ever happened). Formalizing this notion is the basis of the further

study of existence condition and synthesizing algorithms.

2. We formulate the notion of fault-tolerant supervisory control and provide a necessary

and sufficient condition for the existence of such a supervisor. This condition involves

the usual notions of controllability, observability and relative-closure, together with the

notion of state stability. Before putting effort on looking for a fault-tolerant supervisor,

the test of the existence of such supervisor is necessary. This condition provides us a tool

to check if it worths to exert ourselves to find a controlled subplant with fault tolerance.

3. We propose the problem of weakly fault-tolerant supervisory control. The conditions for

fault-tolerant supervisor are strong such that, in real life, most systems are not able to

achieve fault tolerance. Instead of recovering full functionality of the original system,

a weakly fault-tolerant supervisor will allow the controlled system to achieve partial

www.manaraa.com

106

functionality without violating safety specification. This problem is more realistic since

most real systems cannot recover full functionality after repair.

4. We formulate the notion of weakly fault-tolerant supervisory control and provide a nec-

essary and sufficient condition for the existence of such a supervisor. Failure of finding a

fault-tolerant supervisory may urge us to find a supervisor achieving weak fault tolerance.

With a weakly fault-tolerant supervisor, the controlled system will have a safe behavior,

and the controlled behaviors will always be a subset of the original nonfaulty behaviors,

such that all controlled behaviors are legal and no unsafe behavior will be performed.

5. As an extension, we introduce the notion of nonuniformly bounded fault tolerance. In

the previous problems, all recoveries are achieved in an uniformly bounded delay. The

nonuniformly bounded fault tolerance is an extreme situation of the previous problems.

The condition for nonuniformly bounded fault tolerance is even weaker than weakly fault

tolerance, but recovery is still guaranteed. This notion completes the formulation of fault

tolerance.

6. We observe the nonexistence of some faulty/nonfaulty fault-tolerant behaviors. We find

that neither the supremal nonfaulty fault-tolerant behavior nor the maximal nonfaulty

fault-tolerant behavior does not exist in general. This observation forces us to restrict

our attention to state-feedback based control, which gives us a direction in the design of

synthesizing algorithms.

7. We propose the formulation of optimal fault-tolerant control synthesis problem. In this

formulation, we set our goal in synthesizing the fault-tolerant supervisor. Here, ”optimal”

means the maximal nonfaulty behavior and minimal faulty behavior, which is reasonable

since after control we do not want to limit the normal nonfaulty behavior, but the faulty

recovery behavior should be as little as possible to prevent any possible violation of safety

specification.

8. We give the algorithm to synthesize an optimal fault-tolerant supervisor. When the exis-

tence condition mentioned above is not satisfied, this algorithm will result in a supervisor

www.manaraa.com

107

that maximizes the achievable nonfaulty behavior, minimizes the achievable faulty be-

havior and ensures safety, nonblockingness and bounded-delay recovery. The complexity

of this algorithm is quadratic in the size of the plant to be controlled.

The main contributions of this dissertation on decentralized/distributed failure diagnosis

of discrete event systems include:

1. We introduce the notion of safe-codiagnosability. The proposal of this notion is based

on the purpose to study the system property of being able to react safely to failure in a

decentralized setting. It is an extension of safe-diagnosability to the decentralized setting.

Safe-codiagnosability captures the property that when a system executes a trace that is

faulty, there exists at least one diagnoser that can detect this fault within bounded delay

and also before the system behavior becomes unsafe.

2. We establish the necessary and sufficient conditions for safe-codiagnosability. It shows

that the property of safe-codiagnosability can be seperated into the properties of codi-

agnosability with ”zero-delay codiagnosability” of ”boundary safe traces”.

3. We give an algorithm with polynomial complexity to verify safe-codiagnosability. This

algorithm is based on checking whether there exists a situation that violates the condition

of safe-codiagnosability. From the separation of safe-codiagnosability, the algorithm can

also be seperated into three parts that first checks the codiagnosability, then checks the

”boundary safe states”, and finally checks zero-delay codiagnosability. The complexity

of the algorithm is polynomial with respect to the size of the plant and specifications.

6.2 Future Research Topics

For the fault-tolerant supervisor control of discrete event systems, we provide an algorithm

to synthesize an optimal fault-tolerant supervisor. A future direction is the algorithm for

an optimal weakly fault-tolerant supervisor. First, a formalization of optimal fault-tolerant

supervisor control synthesis problem needs to be proposed. Since the weak fault tolerance is

defined on the basis of language stability, the definition of optimality will be based on supremal

www.manaraa.com

108

nonfaulty sublanguage and minimal faulty sublanguage. The design of the algorithm may use

the idea of our existed algorithm, if we can take the recovered faulty states (after which the

behaviors are subsumed by the behaviors after some nonfaulty states) as nonfaulty states and

apply the existed algorithm.

For some systems, it is hard to recover to normal system, but some degraded behaviors are

acceptable. If returning to the nonfaulty part is not achievable, the supervisor should direct

the system to those states with acceptable degraded faulty behaviors. Generally, preference

should be given to the states, a extended algorithm should be able to control the system to

reach the states with highest preference.

For the problems we study in this dissertation, all events are observable. That is, the

supervisor knows every transition in the system, therefore knows the current state of the

system. A possible future direction is to consider partial observability. In this case, the

occurrence of some events is not detectable. Since in real system, detecting sensors are not

able to detect all events, which makes this direction more reasonable. In this extension, the

supervisor will not be able to know the current state, which will make the achievement of fault

tolerance and safety more difficult.

All problems in this dissertation assume only one supervisor. Modern large systems al-

ways require the cooperation of multiple subsystems. Since ability of each single supervisor

is limited by hardware or software conditions, the large systems may need several controllers,

each of which is in charge of one part of the whole system. This motivates us to consider the

possibility of decentralized/distributed fault-tolerant control. In this decentralized/distributed

fault-tolerant control, each controller is responsible only to detect a portion of the whole ob-

servable events and can only control a portion of the whole controllable events. The fault

tolerance of the whole system is achieved by the cooperation of all the controllers.

Another possible extension of this dissertation is to consider time in the problem. In real-

time system, not only the sequence of the execution of the actions but also the timing is

critical. In this dissertation, we consider only untimed discrete event systems. To study real-

time system, we need to change our attention to timed discrete event systems. In this extension,

www.manaraa.com

109

the fault-tolerant supervisor will not only achieve fault tolerance but also meet certain real-

time deadlines by considering the timing properties in timed discrete event systems. That

is, all tasks should be finished before certain deadline is reached, which implies more limited

selection of enabled events.

The research in this dissertation may also be extended to hybrid system, which is currently a

popular research area. In a hybrid system, the system dynamics is described by both continuous

and discrete-event models. A simple example of the hybrid system is the embedded system

where both analog and digital inputs/outputs exist. Analog signals are usually described by

continuous model, while digital signals are usually described by discrete-event models. To

apply the theories developed in this dissertation, some abstraction techniques may be needed

for the continuous part. With a correct model, these discrete-event theories can be used to

control hybrid systems.

www.manaraa.com

110

BIBLIOGRAPHY

Cassandras, C. G. and Lafortune, S. (1999). Introduction to Discrete Event Systems Boston:

Kluwer Academic Publishers.

Kumar, Ratnesh and Garg, Vijay K. (1995). Modeling and Control of Logical Discrete Event

Systems Boston: Kluwer Academic Publishers.

Aviz̆ienis, A. and Laprie, J.-C. and Randell, B. (2000). Fundamental Concepts of Depend-

ability. Proceedings of the 3rd Information Survivability Workshop (ISW’2000), 3–18.

Pierce, W. H. (1965). Failure-Tolerant Computer Design. Academic Press.

Voas, J. (2001). Fault Tolerance. IEEE Software, 18 (4), 54–57.

Jalote P. (1998). Fault Tolearnce in Distributed Systems. Printice Hall.

Weber, D. G. (1989). Formal specification of fault-tolerance and its relation to computer secu-

rity. SIGSOFT Softw. Eng. Notes, 14 (3), 273–277. ACM Press.

Lamport, L. and Shostak, R. and Pease, M. (1980). Reaching agreement in the Presence of

Faults. Journal of the Association of Computing Machinery, 27 (2), 228-234.

Lamport, L. and Shostak, R. and Pease, M. (1982). The Byzantine Generals Problem. ACM

Transactions on Programming Languages and Systems, 4 (3), 382-401.

Berman, P. and Garay, J. A. and Kerry, K. J. (1989). Towars Optimal Distributed Consensus.

Proceedings of the 30th FOCS, 410-415.

www.manaraa.com

111

Berman, P. and Garay, J. A. (1991). Efficient Distributed Consensus with n=(3+ε)t Pro-

cessors. Proceedings of the 5th International Workshop on Distributed Algorithms, Lecture

Notes in Computer Science. 579

Garay, J. A. and Moses, Y. (1998). Fully Polynomial Byzantine Agreement for n>3t Processors

in t+1 Rounds. SIAM Journal on Computing, 27 (1), 247-290.

Gartner, F. C. (1999). Fundamentals of fault-tolerant distributed computing in asynchronous

environments. ACM Computing Surveys, 31 (1), 1–26.

Laprie, J.-C. and Arlat, J. and Beounes, C. and Kanoun, K. (1990). Definition and analysis

of hardware- and software-fault-tolerant architectures. IEEE Computer, 23 (7), 39–51.

Selic, B. (2002). Fault Tolerance Techniques for Distributed Systems. http://www-

106.ibm.com/developerworks/rational/library/114.html.

Schlichting, R. D. and Schneider, F. B. (1983). Fail-Stop Processors: An Approach to Designing

Fault-Tolerant Computing Systems. IEEE Transactions on Computing Systems, 1 (3), 222-

238.

Schneider, F. B. (1983). Fail-stop processors. New York: IEEE Computer Society.

Blanke, M. and Staroswiecki, M. and Wu, N. E. (2001). Concepts and Methods in Fault-

Tolerant Control. Proceedings of the American Control Conference, 410-415.

Blanke, M. and Izadi-Zamanabadi, R. and Bogh, S. A. and Lunau, C. P. (1997). Fault Tolerant

Control Systems - A Holistic View. PDept. of Control Engineering Report (R-1997-4175),

Aalborg University.

Dega, J.-L. (1996). The Rudundancy mechanisms of the Ariane 5 operational control center.

New York: IEEE Computer Society.

Blanke, M. (1996). A component based approach to industrial fault detection and accommoda-

tion. Proceedings of the IFAC World Congress San Frasisco, Vol. N, 97-102

www.manaraa.com

112

Willsky, A. S. (1976). A survey of design method for failure detection in dynamic systems.

Automatica, 12 (6), 601-611.

Isermann, R. (1984). Process Fault Detection Based on Modelling and Estimation Methods.

Automatica, 20, 387-404.

Gertle, J. J. (1988). Survey of model-based failure detection and isolation in complex plants.

IEEE Control System Magazine, 8 (6), 3-11.

Garg, V. K. and Mitchell, J. R. (1998). Distributed predicate detection in a faulty environment.

Proceedings of the 18th International Conference on Distributed Computing Systems, 416-

423.

Chase, C. M. and Garg, V. K. (1998). Detection of Global Predicates: Techniques and Their

Limitations. Distributed Computing, 11 (4), 191-201.

Gartner, F. C. and Kloppenburg, S. (2000). Consistent detection of global predicates under

a weak fault assumption. Proceedings of the 19th IEEE Symposium on Reliable Distributed

Systems, 94-108.

Chow, E. Y. and Willsky, A. S. (1984). Analytical Redundancy and the Design of Robust

Failure Detecting Systems. IEEE Transactions on Automatic Control, 29 (7), 603-614.

Cunningham, T. B. and Poyneer, R. D. (1977). Sensor Failure Detection using Analytical

Redundancy. Proceedings of Joint Automatic Control Conference, 278-287.

Shapiro, E. Y. and Decarli, H. E. (1979). Analytical Redundancy for Flight Control Sensors

on the Lockheed L-1011 Aircraf. Proceedings of the 18th IEEE CDC Conference, 449-454.

Stuckenberg, N. (1985). Sensor Failure Detection in Flight Control Systems Using Deter-

ministic Observers. Proceedings of the 7th IFAC Symposium on Identification and System

Parameter Estimation, 1, 705-710.

www.manaraa.com

113

Merrill, M. C. (1985). Sensor Failure Detection for Jet Engines Using Analytical Redundancy.

Journal of Guidance, Control, and Dynamics, 8 (6), 673-682.

Leuschen, M. L. and Walker, I. D. and Cavallaro, J. R. (2005). Fault Residual Generation

via Nonlinear Analytical Redundancy. IEEE Transactions on Control Systems Technology,

13 (3), 452-458.

Patton, R. J. and Frank, P. M. and Clark, R. N. (2000). Issues of Fault Diagnosis for Dynamic

Systems. London: Springer-Verlag.

Patton, R. J. and Frank, P. and Clarke, D. (1989). Fault Diagnosis in Dynamic Systems:

Theory and Applications. Prentice Hall.

Gertler, J. (1995). Towards a theory of dynamic consistency relations. Proceedings of the IFAC

Workshop On-line Fault Detection and Supervision in the Chemical Process Industries, 143-

156.

Patton, R. (1993). Robustness issues in fault-tolerant control. IEE Colloquium on Fault Di-

agnosis and Control System Reconfiguration, 1, 1-25.

Basseville, M. and Nikiforov, I. (1994). Statistical Change Detection. Prentice Hall.

Sampath, M. and Sengupta, R. and Lafortune, S. and Sinnamohideen, K. and Teneketzis,

D. C. (1996). Fault Diagnosis Using Discrete-Event Models. IEEE Transactions on Control

Systems Technology, 4 (2), 105-124.

Blanke, M. and Kinnaert, M. and Lunze, J. and Staroswiecki, M. (2003). Diagnosis and

Fault Tolerant Control. Berli: Springer-Verlag.

Sampath, M. and Sengupta, R. and Lafortune, S. and Sinnamohideen, K. and Teneketzis,

D. C. (1995). Diagnosability of Discrete Event Systems. IEEE Transactions on Automatic

Control, 40 (9), 1555-1575.

www.manaraa.com

114

Qiu, W. (2005). Decentralized/distributed failure diagnosis and supervisory control of discrete

event systems. Department of Electrical and Computer Engineering, Iowa State University.

Debouk, R. and Lafortune, S. and Teneketzis, D. (2000). Coordinated Decentralized Protocols

for Failure Diagnosis of Discrete Event Systems. Discrete Event Dynamic Systems: Theory

and Applications, 10 (1-2), 33–86.

Jiang, S. and Kumar, R. (2002). Failure Diagnosis of Discrete Event Systems with Linear-Time

Temporal Logic Fault Specifications. Proceedings of 2002 American Control Conference, 128-

133.

Jiang, S. and Kumar, R. (2003). Diagnosis of Repeated Failures for Discrete Event Sys-

tems with Linear-Time Temporal Logic Specifications. Proceedings of IEEE Conference on

Decision and Control, 3221-3226.

Jiang, S. and Kumar, R. and Garcia, H. E. (2003). Diagnosis of Repeated/intermittent Failures

in Discrete Event Systems. IEEE Transactions on Automatic Control, 19 (2), 310-323.

Sampath, M. and Lafortune, S. (1998). Active Diagnosis of Discrete Event Systems. IEEE

Transactions on Automatic Control, 43 (7), 908-929.

Qiu, W. and Kumar, R. (2006). Decentralized Failure Diagnosis of Discrete Event Systems.

IEEE Transactions on Systems, Man and Cybernetics, Part A, 36 (2), 384-395.

Zad, S. H. and Kwong, R. H. and Wonham, W. M. (2003). Fault Diagnosis in Discrete Event

Systems: Framework and Model Reduction. IEEE Transactions on Automatic Control,

48 (7), 1199-1212.

Lygeros, J. and Godbole, D. N. and Broucke, M. (2000). A fault tolerant control architecture

for automated highway system. IEEE Transactions on Control Systems Technology, 8 (2),

205-219.

www.manaraa.com

115

Godbole, D. N. and Lygeros, J. and Singh, E. and Deshpande, A. and Lindsey, A. E. (2000).

Communication protocols for a fault-tolerant automated highway system. IEEE Transactions

on Control Systems Technology, 8 (5), 787-800.

Beneveniste, A. and Fabre, E. and Haar, S. and Jard, C. (2003). Diagnosis of asynchronous

discrete event systems: a net unfolding approach. IEEE Transactions on Automatic Control,

48 (5), 714-727.

Bouloutas, A. and Hart, G. W. and Schwartz, M. (1992). Simple finite-state fault detectors

for communication networks. IEEE Transactions on Communications, 40 (3), 477-479.

Miller, R. E. and Arisha, A. K. (2001). Fault identification in networks by passive testing.

Proceedings of IEEE Annual Simulation Symposium, 277-284.

Das, S. R. and Holloway, L. E. (2000). Characterizing a confidence space for discrete event

timing for fault monitoring using discrete sensing and actuation signals. IEEE Transactions

on Systems, Man and Cybernetics, Part A: Systems and Humans, 30 (1), 52-66.

Pandalai, D. and Holloway, L. (2000). Template languages for fault monitoring of timed

discrete event processes. IEEE Transactions on Automatic Control, 45 (5), 868-882.

Lin, F. (1994). Diagnosability of discrete event systems and its applications. Discrete Event

Dynamic Systems: Theory and Applications, 4 (1).

Westerman, G. and Kumar, R. and Stroud, C. and Heath, J. R. (1998). Discrete event

systems approach for delay fault analysis in digital circuits. roceedings of 1998 American

Control Conference, 1, 239-243.

Hadjicostis, C. N. and Verghese, G. C. (2001). Power system monitoring based on relay and cir-

cuit breaker information. Proceedings of the 2001 IEEE International Symposium on Circuits

and Systems, 2, 197-200.

www.manaraa.com

116

Abdelwahed, S. and Wu, J. and Biswas, G. and Ramirez, J. and Manders, E. (2005).

Online Fault Adaptive Control for Efficient Resource Management in Advanced Life Support

Systems. Habitation - International Hournal for Human Support Research, 10 (2), 105-115.

Ji, M. and Zhang, Z. and Biswas, G. and Sarkar, N. (2003). Hybrid Fault Adaptive Control

of a Wheeled Mobile Robot. IEEE/ASME Transactions on Mechatronics, 8 (2), 226-233.

Karsai, G. and Biswas, G. and Pasternak, T. and Narasimhan, S. and Pecili, G. and Simon,

G. and Kovacshazy, T. (2001). Fault Adaptive Control: a CBS Application. Proceedings

of the 8th Annual IEEE International Conference and Workshop on the Engineering of

Computer Based Systems, 205-211.

Simon, G. and Karsai, G. and Biswas, G. and Abdelwahed, S. and Mahadevan, N. and

Szemethy, T. and Pecili, G. and Kovacshazy, T. (2003). Model-Based Fault Adaptive

Control of Complex Dynamic Systems. Proceedings of the 20th IEEE Instrumentation and

Measurement Technology Conference, 1, 176-181.

Simon, G. and Kovacshazy, T. and Pecili, G. and Szemethy, T. and Karsai, G. and Ledeczi,

A. (2002). Implementation of reconfiguration management in fault-adaptive control systems.

Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, 1,

123-127.

Looze, D. and Weiss, J. and Eterno, J. and Barrett, N. (2005). An automatic redesign

approach for restructurable control systems. IEEE Control Systems Magazine, 5 (2), 16-22.

Elgersma, M. and Glavas̆ki, S. (2001). Reconfigurable control for active management of

aircraft system failures. Proceedings of the American Control Conferenc, 2627-2639.

Liu, J. and Darabi, H. (2004). Control reconfiguration of discrete event systems controllers

with partial observation. IEEE Transactions on Systems, Man and Cybernetics, Part B:

Cybernetics, 34 (6), 2262-2272.

www.manaraa.com

117

Moitra, A. and Joseph, M. (1983). Cooperative recovery from faults in distributed programs.

Proceedings of IFIP 9th World Congress, 481-486.

Bernardeschi, C. and Fantechi, A. and Simoncini, L. (2000). Formally Verifying fault tolerant

system designs. The Computer Journal, 43 (3), 191–205.

Liu, Z. and Joseph, M. (1999). Specification and Verification of Fault-Tolerance, Timing, and

Scheduling. IEEE Transactions on Programming Languages and Systems, 21 (1), 46-89.

Liu, Z. and Joseph, M. (1996). Verification of Fault Tolerance and Real Time. Proceedings of

the 26th IEEE Symposium on Fault Tolerant Computing Systems (FTCS-26), 220-229.

Abadi, M. and Lamport, L. (1988). The Existence of Refinement Mapping. Proceedings of

3rd IEEE Symposium on Logi and Computer Science, 165-175.

Lincoln, P. and Rushby, J. (1993). a formally verified algorithm for interactive consistency

under a hybrid fault model. Digest of papers of the 23th IEEE Symposium on Fault Tolerant

Computing Systems (FTCS-23), 402-411.

Ayache, S. and Conguet, E. and Humbert, P. and Rodriguez, C. and Sifakis, J. and Gerlich,

R. (1996). Formal Methods for the Validation of Fault Tolerance in Autonomous Spacecraft.

Proceedings of the 26th IEEE Symposium on Fault Tolerant Computing Systems (FTCS-26),

353-357.

Lin, F and Wonham, W. M. (1988). On observability of discrete-event systems. Information

Sciences, 44 (3), 173-198.

Brave, Y. and Heymann, M. (1990). On stabilization of discrete event processes. International

Journal of Control, 51 (5), 1101-1117.

Özveren, C. M. and Willsky, A. S. and Antsaklis, P. J. (1991). Stability and Stabilizability of

Discrete event dynamical systems. Journal of ACM, 38 (3), 730-752.

www.manaraa.com

118

Kumar, R. and Garg, V. K. and Marcus, S. I. (1993). Language stability and stabilizability

of discrete event dynamical systems. SIAM Journal of Control and Optimization, 31 (5),

1294-1320.

Willner, Y. and Heymann, M. (1995). Language convergence in controlled discrete-event

systems. IEEE Transactions on Automatic Control, 40 (4), 616-627.

Lafortune, S. and Lin, F. (1991). On tolerable and desirable behaviors in supervisory control

of discrete event systems. Discrete Event Dynamical System: Theory and Application, 1 (1),

61-92.

Jensen, R. M. (2003). DES Controller Synthesis and Fault Tolerant Control: A Survey of

Recent Advances. Technical Report TR-2003-40. IT University of Copenhagen.

Darabi, H. and Jafari, M. A. and Buczak, A. L. (2003). A Control Switching theory for Super-

visory Control of Discrete Event SystemsI. IEEE Transactions on Robotics and Automation,

19 (1), 131-137.

Rohloff, K. R. (2005). Sensor Failure Tolerant Supervisory Control. Proceedings of the 44th

IEEE Conference on Decision and Control, and the European Control Conference 2005,

3493 - 3498.

Cho, K. -H. and Lim, J. -T. (1996). Failure Diagnosis and Fault Tolerant Supervisory Control

Systems. IEICE Transactions on Information and System, E79-D(9), 1223 - 1231.

Cho, K. -H. and Lim, J. -T. (1998). Synthesis of Fault Tolerant Supervisor for Automated

Manufacturing Systems: A Case Study on Photolithographic Process. IEEE Transaction on

Robotics and Automation, 348 - 351.

Zhou, M. C. and Dicesare, F. (1989). Adaptive Design Of Petri Net Controllers For Error

Recovery In Automated Manufacturing Systems. IEEE Transactions on Systems, Man and

Cybernetics, 19 (5), 963 - 973.

www.manaraa.com

119

Takai, S. and Ushio, T. (2000. Reliable decentralized supervisory control of discrete event

systems. IEEE Transations on System, Man, and Cybernetics—Part B, 30 (5), 661-667.

Iordache, M. V. and Antsaklis, P. J. (2004). Resilience to Failure and Reconfigurations in the

Supervision Based on Place Invariants. Proceedings of the 2004 American Control Confer-

ence, 4477 - 4482.

Arora, A. and Gouda, M. (1993). Closure and Convergence: A Foundation of Fault-Tolerant

Computing. IEEE Transactions on Software Engineering, Special issue on software reliabil-

ity, 19 (11), 1015 - 1027.

Arora, A. and Kulkarni, S. S. (1998). Component based design of multitolerant systems. IEEE

Transactions on Software Engineering, 24 (1), 63-78.

Attie, P. C. and Arora, A. and Emerson, E. A. (2004). Synthesis of Fault-Tolerant Concurrent

Programs. ACM Transactions on Programming Languages and Systems, 26 (1), 125-18.

Anderson, P. M. and Fouad, A. A. (1994). Power System Control and Stability. New York:

IEEE Press.

Ramadge, P. J. and Wonham, W. M. (1987). Supervisory Control of a class of Discrete Event

Processes. SIAM Journal of Control and Optimization, 25 (1), 206-230.

Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2008). A framework for fault-tolerant su-

pervisory control of discrete event systems. IEEE Transaction on Automatic Control, 53 (8),

1839-1849

Paoli, A. and Lafortune, S. (2005). Safe diagnosability for Fault-Tolerant Supervision of

discrete event systems. Automatic, 41 (8), 1335-1347.

Qiu, W. and Kumar, R. (2004). Decentralized Failure Diagnosis of Discrete Event Systems.

Proceedings of 2004 International Workshop on Discrete Event Systems, 145-150.

www.manaraa.com

120

Pouliezos, A. D. and Stavrakakis, G. S. (1994). Real time fault monitoring of industrial pro-

cesses. Boston, MA: Kluwer Academic Publishers.

Sampath, M. and Sengupta, R. and Lafortune, S. and Sinaamohideen, K. and Teneket-

zis, D. (1995). Diagnosability of Discrete Event Systems. IEEE Transactions on Automatic

Control, 40 (9), 1555-1575.

Jiang, S. and Huang, Z. and Chandra, V. and Kumar, R. (2001). A Polynomial Time

Algorithm for Diagnosability of Discrete Event Systems. IEEE Transactions on Automatic

Control, 46 (8), 1318-1321.

Yoo, T. S. and Lafortune, S. (2002). Polynomial-time verification of diagnosability of partially

observed discrete-event systems. IEEE Transactions on Automatic Control, 47 (9), 1491-

1495.

Sampath, M. and Lafortune, S. (1998). Active diagnosis of discrete event systems. IEEE

Transactions on Automatic Control, 43 (7), 908-929.

Das, S. R. and Holloway, L. E. (2000). Characterizing a confidence space for discrete event

timings for fault monitoring using discrete sensing and actuation signals. IEEE Transactions

on Systems, Man, and Cybernetics—Part A: Systems and Humans, 30 (1), 52-66.

Pandalai, D. and Holloway, L. (2000). Template languages for fault monitoring of timed

discrete event processes. IEEE Transactions on Automatic Control, 45 (5), 868-882.

Lin, F. (1994). Diagnosability of discrete event systems and its applications. Discrete Event

Dynamic Systems: Theory and Applications, 4 (1), 197-212.

Zad, S. H. and Kwong, R. H. and Wonham, W. M. (2003). System-assigned learning strategies

and CBI. IEEE Transactions on Automatic Control, 48 (7), 1199-1212.

Jiang, S. and Kumar, R. (2004). Failure Diagnosis of Discrete Event Systems with Linear-

time Temporal Logic Fault Specifications. IEEE Transactions on Automatic Control, 49 (6),

934-945.

www.manaraa.com

121

Jiang, S. and Kumar, R. and Garcia, H. E. (2003). Diagnosis of repeated/intermittent failures

in discrete event systems. IEEE Transactions on Robotics and Automation, 19 (2), 310-323.

Debouk, R. and Lafortune, S. and Teneketzis, D. (2000). Coordinated decentralized protocols

for failure diagnosis of discrete event systems. Discrete Event Dynamical Systems: Theory

and Applications, 10, 33-79.

Sengupta, R. and Tripakis, S. (2002). Decentralized diagnosis of regular language is undecid-

able. Proceedings of IEEE Conference on Decision and Control, 423-428.

Boel, R. K. and van Schuppen, J. H. (2002). Decentralized failure diagnosis for discrete-event

systems with constrained communication between diagnosers. Proceedings of International

Workshop on Discrete Event Systems,

Rudie, K. and Wonham, W. M. (1992). Think globally, act locally: decentralized supervisory

control. IEEE Transactions on Automatic Control, 37 (11), 1692-1708.

Wen, Q. and Kumar, R. and Huang, J. (2008). Synthesis of Fault-Tolerant Supervisory Con-

trol for Discrete Event Systems. Proceedings of 2008 American Control Conference, Seattle,

WA.

Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007b). Weakly Fault-Tolerant Supervi-

sory Control of Discrete Event Systems. Proceedings of 2007 American Control Conference,

New York, NY.

Wen, Q. and Kumar, R. and Huang, J. and Liu, H. (2007a). Fault-tolerant supervisory control

of discrete event systems : Formulation and existence results. Proceedings of Dependable

Control of Discrete Systems, Paris, France.

	2009
	Fault-tolerant supervisory control of discrete-event systems
	Qin Wen
	Recommended Citation

	tmp.1333719725.pdf.uArzm

